
Optimally Efficient Goal-Filling Algorithms for Self-Reconfigurable Hexagonal
Metamorphic Robots

Jamee Bateau Elianne Schutze Jennifer E. Walter
Department of Computer Science

Vassar College
{jabateau,elschutze,jewalter}@vassar.edu

Abstract
The problem addressed is the distributed reconfiguration of a sys-
tem of two-dimensional mobile robots (modules) from an initial
straight chain into an arbitrary goal configuration that satisfies
simple admissibility conditions. Our reconfiguration strategy de-
pends on finding a contiguous path of cells, called a substrate path,
that spans the goal configuration. Modules fill in this substrate path
and then move along the path to fill in the remainder of the goal
without collision or deadlock.

We present algorithms that improve the efficiency and enlarge
the set of goal configurations that can be filled by the algorithms
presented in [14] and [15], our previous work. Our algorithms
combine techniques used in the goal-filling algorithms with bridg-
ing algorithms presented in [6]. We developed two strategies for
efficient goal filling and compared their performances to existing
goal-filling algorithms as well as to each other via simulation us-
ing a discrete event simulator. We implemented an algorithm for
finding a substrate path that could more evenly bisect the goal con-
figuration, and an algorithm for optimally filling a substrate path,
developed in previous unpublished work. The results of our simula-
tion are presented and discussed.

1 Introduction
A self-reconfigurable robotic system is a collection of inde-
pendently controlled, mobile robots, each of which has the
ability to connect, disconnect, and move around adjacent
robots. Metamorphic robotic systems [3], a subset of self-
reconfigurable systems, are further limited by requiring each
module to be identical in structure, motion constraints, and
computing capabilities. Typically, the modules have a regu-
lar symmetry so that they can be packed densely, i.e., packed
so that gaps between adjacent modules are as small as possi-
ble. In these systems, robots achieve locomotion by moving
over a substrate composed of one or more other robots. The
mechanics of locomotion depend on the hardware and can
include module deformation to crawl over neighboring mod-
ules [4, 10] or to expand and contract to slide over neighbors
[11]. Alternatively, moving robots may be constrained to
rigidly maintain their original shape, requiring them to roll
over neighboring robots [7, 17, 18].

Shape changing in these composite systems is envisioned
as a means to accomplish various tasks, such as bridge build-

ing, structural support, satellite recovery, or tumor excision
[10]. The complete interchangeability of the robots pro-
vides a high degree of system fault tolerance. Also, self-
reconfiguring robotic systems are potentially useful in envi-
ronments that are not amenable to direct human observation
and control (e.g., interplanetary space, undersea depths).

The motion planning problem for a metamorphic robotic
system is to determine a sequence of robot motions required
to go from a given initial configuration (I) to a desired goal
configuration (G).

Most of the existing motion planning strategies rely on
centralized algorithms to plan and supervise the motion of
the system components [4, 5, 10, 11, 16]. Others use dis-
tributed approaches which rely on heuristic approximations
or require communication between robots in each step of the
reconfiguration process [1, 7, 8, 17, 18].

We focus on a system composed of planar, hexagonal
robotic modules as described by Chirikjian [4]. We con-
sider a distributed motion planning strategy, given the as-
sumption of initial global knowledge of G. Our distributed
approach offers the benefits of localized decision making and
the potential for greater system fault tolerance. Additionally,
our strategy requires less communication between modules
than other approaches. We have previously applied this ap-
proach to the problem of reconfiguring a straight chain to an
intersecting straight chain [13] and a straight chain to a goal
configuration that satifies a general “admissibility” condition
[12]. In these papers, a centralized algorithm was described
for determining whether an arbitrary goal configuration is
admissible.

2 Related work
Chirikjian [4] and Pamecha [10] discuss centralized algo-
rithms for planar hexagonal modules that use the distance
between all modules in I and the coordinates of each goal
position to accomplish the reconfiguration of the system.
Pamecha et al. [10] define the distance between configu-
rations as a metric and apply this metric to system self-
reconfiguration using a simulated annealing technique to
drive the process towards completion.

Centralized motion planning strategies for systems of two
dimensional robotic modules are also examined by Nguyen

1



et al. [9] and analysis is presented for the number of moves
necessary for specific reconfigurations.

A centralized motion planning strategy for three dimen-
sional cubic robots is presented by Rus and Vona [11]. A
set of distributed motion planning algorithms for a system of
cubic robots is presented by Butler et al. in [1]. In another
paper [2], Butler et al. present a rule set that can be run by
vertical ”layers” of cubic modules and a distributed control
algorithm for locomotion is described that will work in any
system composed of cubic modules. This paper also presents
a rule set for distributed control of cubic modules when ob-
stacles are present in the environment.

Distributed approaches are taken by Murata, et al.
to reconfigure a system of two dimensional hexagonal
modules [7], and a system of three dimensional cubic
modules [8]. Yim et al. [17] and Zhang et al. [18] present
distributed algorithms to reconfigure three dimensional
rhombic docecahedral modules. Each of these algorithms
are probabilistic and require substantial message passing
between neighboring modules.

Our approach
This paper examines distributed motion planning strategies
for a planar metamorphic robotic system undergoing a re-
configuration from a straight chain to a goal configuration
satisfying certain properties. In our algorithms, robots are
identical, but act as independent agents, making decisions
based on their current position and the sensory data obtained
from physical contacts with adjacent robots. Our purpose is
to seek an understanding of the necessary building blocks for
reconfiguration, starting with algorithms in which no mes-
sages need to be passed between participating robots during
reconfiguration. Reconfiguration in certain scenarios, like
the ones presented in this and our earlier papers [12, 13],
can be accomplished using algorithms that do not require
any message passing. Therefore, our algorithms are more
communication efficient than the distributed approaches of
[1, 7, 17] and [18].

In this paper, we consider two dimensional, hexagonal
robots like those described by Chirikjian [3]. Our proposed
scheme uses a classification of robot types based on con-
nected edges similar to the classification used by Murata et
al. [7] for connected vertices. In the algorithms presented in
this paper, each robot independently determines whether it is
in a movable state based on the cell it occupies in the plane,
the locations of cells in the goal configuration, and on which
sides it contacts neighbors. Robots move from cell to cell
and modify their states as they change position. Since the
robots know the coordinates of the goal cells, we show that
each of them can independently choose a motion plan that
avoids module collision.

3 System model
Assumptions about modules
The plane is partitioned into equal-sized hexagonal cells and

labeled using the same coordinate system as described by
Chirikjian [3].

Our model provides an abstraction of the hardware fea-
tures and the interface between the hardware and the appli-
cation layer.

- Each module is identical in computing capability and runs
the same program.

- Each module is a hexagon of the same size as the cells of
the plane and always occupies exactly one of the cells.

- Each module knows at all times:

• its location (the coordinates of the cell that it currently
occupies),

• its orientation (which edge is facing in which direction),
and

• which of its neighboring cells is occupied by another
module.

Modules move according to the following rules.

1. Modules move in lockstep rounds.
2. In a round, a module M is capable of moving to an

adjacent cell, C1, iff (see Fig. 1 for an example)

(a) cell C1 is currently empty,
(b) module M has a neighbor S that does not move in

the round (called the substrate) and S is also adjacent
to cell C1, and

(c) the neighboring cell to M on the other side of C1

from S, C2, is empty.

3. Only one module tries to move into a particular cell in
each round.

(a) (b)

C2C2

M

S

M

S

C1

f
e

g

e
C3

f

g

Figure 1: Before (a) and after (b) module movement: M is
moving, S is substrate, and C1, C2, and C3 are empty cells.

If the algorithm does not ensure that each moving module
has an immobile substrate, as specified in rule 2(b), then the
results of the round are unpredictable. Likewise, the results
of the round are unpredictable if the algorithm does not
ensure rule 3.

2



4 Problem definition
Our objective is to design a distributed algorithm that will
cause the modules to move from an initial configuration, I , in
the plane to a known goal configuration, G. This algorithm
should ensure that modules do not collide with each other,
and the reconfiguration should be accomplished in the most
efficient way possible.

Definition 1 An admissible goal configuration has no holes
and no vertical gaps.

5 Finding substrate paths
Our goal was to find a substrate path that most evenly bi-
sected the goal configuration so as to maximize the number
of goal-cells being filled at a time. An evenly bisected goal
allowed modules to bidirectionally break off the initial chain
and simultaneously filled both north and south of the sub-
strate path. If the substrate path found was not continuous,
we used the path algorithm presented in [14] instead. The
procedure for finding an admissible substrate path in G pro-
ceeds in two steps:

1. Determine the midpoint cell in each column of the goal
configuration and assign it to be a path cell. If a column
length is even, the chosen path cell would be the cell north
of where the midpoint would be if the column length was
odd.

2. Check if path is continuous. If path is continuous, use for
substrate path. Otherwise, use path algorithm presented in
[14] to find substrate path.

Once the substrate path is found, the moving modules fill
the path first, and the remaining modules travel north and
south of the substrate path to fill the rest of the goal configu-
ration.

6 Bridges
Since we wanted single-cell spacing between moving mod-
ules, we encountered deadlock problems when the substrate
path met a column in the goal at an acute angle. We solved
this by placing a bridge in cells where deadlock would occur.
A bridge is a moving module that is stopped or temporar-
ily delayed a number of time steps to help the other moving
modules reach their goal cells.

There are two different bridge types, permanent and tem-
porary. Say Column A is being filled, and the column to the
west of A is Column B.

• When there are goal cells in Column B, a permanent
bridge is placed in the first goal cell of Column B and
is stopped because it has reached its corresponding goal
cell. The bridge is then used as a stepping stool for the
remaining modules to fill the rest of Column A.

• When there are no goal cells in Column B, a temporary
bridge is placed in the first cell (which is a non-goal
cell) of Column B and is delayed for however many
time steps are needed for all but the last cell of Column
A to be filled. That temporary bridge cell then moves
again and fills the last cell in Column A.

These bridging methods are used for every column in the
goal configuration until the whole goal is filled.

7 Distributed reconfiguration
In this section, we describe the distributed algorithm that
performs the reconfiguration of I to G after an admissible
substrate path is found using the algorithms in the previous
section.

7.1 Algorithm assumptions
1. Each module knows the total number of modules in the

system, n, and the goal configuration, G.

2. Initially, one module is in each cell of I .

3. G is an admissible configuration.

4. I and G overlap in one goal cell in column G1.

7.2 Overview of algorithm
The algorithm works in synchronous rounds. In each round,
each module determines whether it is free (cf. Fig. 2). In
this figure, the modules labeled trapped are unable to move
due to hardware constraints and those labeled free represent
modules that are allowed to move in our algorithm, possibly
after some initial delay. The modules in the other category
are restricted from moving by our algorithm, not by hardware
constraints.

                Indicates contact edge
                Indicates non−contact edge

FREE

TRAPPED

OTHER

Figure 2: Contact patterns possible in algorithm.

Only module 0 (the module at the free end of I) can ini-
tially determine the exact time when it will begin moving.
Other modules in I rely on local contact information to cal-
culate their position in I and any possible delay after they

3



become free to avoid collision and deadlock. Once a mod-
ule begins moving, it has only the local information about
contacts with adjacent modules and its current coordinates
to guide its part of the entire system reconfiguration.

All modules except module 0 dynamically calculate their
position in I , direction of rotation, possible delay and final
coordinates in G by counting the modules in initial positions
further from the intersection of I and G as they pass, noting
the direction (CW or CCW) in which the passing modules
rotate. The module intersecting G does not move.

Let p be the array of coordinates of goal cells on the sub-
strate path (stored locally at each module), starting with the
cell that has an edge incoming from the cell in which I and
G intersect in column G1. Coordinates of goal cells to the
north and south of the substrate path are also stored in arrays
at each module. A module calculates the goal cell it will
occupy using its position in I , the length of the arrays of co-
ordinates on, north, and south of the substrate path, and the
current count of modules that have passed on both sides.

Modules fill in the substrate path first. After every goal
cell in p is filled, modules alternate rotation directions, filling
the columns projecting north and south of p from east, Gm,
to west, G1.

Modules use specific patterns of rotation and delay, as
listed below.

1. (0,0)-bidirectional: modules alternate direction with no
delay after free.

2. (1,0)-bidirectional: modules alternate direction with delay
of 1 time unit after free for modules in positions > 1 rotat-
ing CW and no delay after free for modules rotating CCW.

3. 1-unidirectional: modules rotate same direction with delay
of 1 after free for modules in positions > 1.

4. 2-unidirectional: modules rotate same direction with delay
of 2 after free for modules in positions > 1.

The reconfiguration schema uses the shape of the sub-
strate path to determine how to start and proceeds as follows:

• For those modules filling in the substrate path:

– If the substrate path has no vertical segments, either
modules 0 through |p|−1 or modules 0 through |p|−2
and |p|+ 2 use (0,0)-bidirectional pattern.

– If p has vertical segments, modules 0 . . . |p|−1 use the
2-unidirectional pattern in CW direction. Module |p|
begins (0,0)-bidirectional pattern, moving CCW (un-
less there are no cells to be filled in the CCW direc-
tion, in which case it continues the 1-unidirectional
pattern).

• For modules in positions > |p| (i.e., these modules
climb over the substrate path to fill the rest of G):

– Modules use (0,0)-bidirectional pattern until all cells
either north or south of p are filled. After this, mod-
ules use 1-unidirectional pattern, with either CW or
CCW direction.

– Each module stops in the goal cell to the north or
south of the substrate path that it has calculated it
should occupy.

• Once a module stops for a round in a goal cell, it never
moves out of that goal cell.

Local variables at each module include:

• contacts: Boolean array indicating on which edges a mod-
ule has neighboring modules. Assumed to be automati-
cally updated at each round by some lower layer.

• position: Order of modules in I , starting at the end of I
that is furthest from G. If the module is initially at distance
n−2 from G, position= 0, otherwise position is calculated
by counting passing modules.

• d: Direction of movement, CW or CCW.

• flips: Counter used to determine whether the module is
free.

• delay: Number of time units module waits after it is free
and before it makes its first move. Initially 0.

In round r := 1, 2, . . . :
1. if ((position = 0) or (IsFree()))
2. if (delay = 0)
3. move d
4. end if
5. else
6. delay := delay−1
7. Count modules passing in CW and CCW directions
8. end if

Procedure IsFree():
1. flips := 0
2. for (i := 0 to 5) do
3. if (contacts[i] 6= contacts[(i + 1) % 6])
4. flips++
5. end if
6. end for
7. return ((position - 1 is unoccupied) and

(flips = 2) and (number of contact edges < 5))

Figure 3: Pseudocode for all modules from straight chain to
admissible G.

Each module calculates its rotation direction, delay before
moving, and final goal coordinates after it determines its po-
sition in I . Modules in their initial positions keep separate
tallies of other modules passing on the CW and CCW side.

8 Conclusions and future work
We have presented a bridging algorithm for optimally fill-
ing an arbitrary goal configuration column by column that
resolves collision and deadlock situations when they occur.
We also considered an algorithm that allowed modules to fill
a goal configuration layer by layer (i.e., row by row), but
that has not been developed fully and will be left for future
work. Once the layering algorithm is robust, we will be able

4



to compare the number of time steps taken for each algorithm
to fill arbitrary goal configurations and determine which al-
gorithm is more efficient.

References
[1] Z. Butler, S. Byrnes, and D. Rus. Distributed motion

planning for modular robots with unit-compressible
modules. In Proc. of IROS 2001, to appear.

[2] Z. Butler, K. Kotay, D. Rus, and K. Tomita. Cellular au-
tomata for decentralized control of self-reconfigurable
robots. In Proc. of the ICRA 2001 Workshop on Modu-
lar Robots, 2001.

[3] G. Chirikjian. Kinematics of a metamorphic robotic
system. In Proc. of IEEE Intl. Conf. on Robotics and
Automation, pages 449–455, 1994.

[4] G. Chirikjian and A. Pamecha. Bounds for self-
reconfiguration of metamorphic robots. In Proc. of
IEEE Intl. Conf. on Robotics and Automation, pages
1452–1457, 1996.

[5] K. Kotay, D. Rus, M. Vona, and C. McGray. The self-
reconfiguring robotic molecule: design and control al-
gorithms. In Workshop on Algorithmic Foundations of
Robotics, pages 376–386, 1998.

[6] D. Little and J. Walter. Using Hexagonal Metamorphic
Robots to Form Temporary Bridges. In Proc. of the
IEEE International Conference on Intelligent Robotic
Systems, Aug. 2005, Edmonton, Alberta, Canada,
pages 2652-2657

[7] S. Murata, H. Kurokawa, and S. Kokaji. Self-
assembling machine. In Proc. of IEEE Intl. Conf. on
Robotics and Automation, pages 441–448, 1994.

[8] S. Murata, H. Kurokawa, E. Yoshida, K. Tomita, and
S. Kokaji. A 3-D self-reconfigurable structure. In Proc.
of IEEE Intl. Conf. on Robotics and Automation, pages
432–439, 1998.

[9] A. Nguyen, L. J. Guibas, and M. Yim. Controlled mod-
ule density helps reconfiguration planning. To appear
in Proc. of 4th International Workshop on Algorithmic
Foundations of Robotics, 2000.

[10] A. Pamecha, I. Ebert-Uphoff, and G. Chirikjian. Use-
ful metrics for modular robot motion planning. IEEE
Transactions on Robotics and Automation, 13(4):531–
545, 1997.

[11] D. Rus and M. Vona. Self-reconfiguration planning
with compressible unit modules. In Proc. of IEEE Intl.
Conf. on Robotics and Automation, pages 2513–2520,
1999.

[12] J. Walter, J. Welch, and N. Amato. Distributed recon-
figuration of hexagonal metamorphic robots in two di-
mensions, in Sensor Fusion and Decentralized Con-
trol in Robotic Systems III, Gerard T. McKee and Paul
S. Schenker, eds., Proceedings of SPIE, Vol. 4196, pp.
441-453, 2000.

[13] J. Walter, J. Welch, and N. Amato. Distributed recon-
figuration of metamorphic robot chains. In Proc. of
ACM Symp. on Principles of Distributed Computing,
pages 171–180, 2000.

[14] J. Walter, J. Welch, and N. Amato. Concurrent meta-
morphosis of hexagonal robot chains into simple con-
nected configurations. IEEE Transactions on Robotics
and Automation, Vol. 18, No. 6, pp. 945-956, 2002.

[15] J. Walter, E. Tsai, and N. Amato. Algorithms for Fast
Concurrent Reconfiguration of Hexagonal Metamor-
phic Robots. IEEE Transactions on Robotics, Vol. 21,
No. 4, pp. 621-631, 2005.

[16] M. Yim. A reconfigurable modular robot with many
modes of locomotion. In Proc. of Intl. Conf. on Ad-
vanced Mechatronics, pages 283–288, 1993.

[17] M. Yim, J. Lamping, E. Mao, and J. G. Chase. Rhombic
dodecahedron shape for self-assembling robots. SPL
TechReport P9710777, Xerox PARC, 1997.

[18] Y. Zhang, M. Yim, J. Lamping, and E. Mao. Dis-
tributed control for 3D shape metamorphosis. To ap-
pear in Autonomous Robots Journal, special issue on
self-reconfigurable robots, 2000.

5


