
NORTHWESTERN UNIVERSITY COMPUTER ENGINEERING, AUGUST 2009 1

Self Repairing Processors Through Software and
Hardware.

York Prado, Ungraduate Student, CNU, Giang Hoang, Graduate Student, NU,
and Dr. Russ Joseph, Professor/Advisor, NU

Abstract—As hardware gets smaller and much more sophisti-
cated, the likelihood of faulty hardware being produced increases
dramatically. Due to this, current research is being done in trying
to reduce the severity of these errors. As hardware faults cannot
be fixed on the fly, methods have to be designed to minimize
the error in the output and get a result that is good enough to
use in software. Since this method does not produce a completely
error-free output and is not 100 percent accurate, this is not ideal
for anything that needs exact values. This includes programs
that deal with statistical or data analysis. Instead, efforts will be
focused on multimedia, where a slight alteration of a pixel or a
drop in frames will be barely noticeable to the human observer.
This leads to a higher fault tolerance in multimedia applications,
which is a good starting point in testing new methods of self
repair. The main focus now will be to concentrate on the MMX
and SSE 1/2 instructions used in x86 CPUs when encoding and
decoding different multimedia formats using the open source
program FFMPEG.

The goal of the paper will be to analyze and profile FFMPEG
using the profiling tool OProfile to see what exact lines of code
and assembly instructions are being used when encoding and
decoding pictures and videos into different formats. Profiling
using Oprofile works by taking constant samples of everything
being run on the system. This program then lists the procedures
and calls that were being run while the profiler daemon was
running and lists them according to the length of time each
procedure took. The procedures that will be concentrated on
are those that will be filled with SIMD instructions. Once given,
several software and hardware techniques will be simulated in
order correct faults in hardware.

Index Terms—DCT, IDCT, SIMD, SSE, MMX, x86, OProfile.

I. INTRODUCTION

AS hardware gets smaller and much more sophisticated,
the likelihood of faulty hardware being produced in-

creases dramatically. Because the VLSI processes are reaching
physical limits in nanoscale production, manufacturers are
having a harder time to meet production yields. These sources
of hardware faults are often attributed to soft errors, wearout,
and process variation.[1] Today, a vast amount of research
is being done in order to increase production yields. In [4],
the concept of error tolerance in hardware that deals with
multimedia applications is introduced. A circuit is defined
as error-tolerant in its application if it contains defects in its
circuitry that can cause errors and if the circuit maintains an
acceptable result in the end. Multimedia is especially suited for
error tolerance in hardware because of the standard encoding
and decoding of multimedia to lossy formats, and the lack
of perception to the human observer.[3] Humans tend to be
insensitive to slight variations in sound and colors. Also,
converting to a lossy multimedia format may increase fault

tolerance of an acceptable level because of the loss of data.[5]
In [3], it is shown that conventional ATPG proves to give

unacceptable yield improvement because it detects circuits
with acceptable faults along with those with unacceptable
faults. A new test methodology is provided which introduces a
generalized test pattern and then performs a masking technique
on boards that are deemed acceptable. Results show that cir-
cuitry with acceptable faults are accepted more often, thereby
increasing yields.

[2] shows that for many applications, tolerance can be varied
for many components inside that application. This is due to
the fact that some components are less vital in producing an
acceptable result than others. This is especially seen in color
interpolation filtering which reproduces missing color samples
at every pixel.

The paper is organized as follows. In section 2, a brief
overview of the fault simulation and methods used to correct
this will be given. Then, a brief overview of how multimedia is
encoded and decoded will be be described in section 3. Section
4 will then be used to describe the profiling of FFMPEG and
its results. Finally, section 5 will be used to draw conclusions.

II. SINGLE STUCK-AT-FAULT MODEL

One of the biggest increasing problems in hardware today
are hard faults. The single stuck-at-fault model is one such
example problem and most test patterns are generated with
this fault model in mind.[7] Below is a Kogge-Stone adder
used to simulate a single stuck-at-fault model.

Fig. 1. Kogge-Stone adder used to implement SIMD addition instruction

The fault model can be described as having a gate stuck at
a signal value that is independent of other signals and values.
For example, any one of these adders in the diagram can be
stuck at a 1 or stuck at a 0 value in which it cannot be changed.



NORTHWESTERN UNIVERSITY COMPUTER ENGINEERING, AUGUST 2009 2

This problem can give a computationational error depending
on which bit the stuck at fault adder is located. If the stuck-
at-fault adder is located on the LSB, there will be very little
error, but if it were stuck at the MSB, it has the potential to
give a tremendous amount of error.

A. Solutions
As it stands now, there are a variety of ways to correct a

single stuck-at-fault error. Manufacturers often disable parts
of logic in circuitry that is faulty. Even though this increases
yield, overall yield is becoming smaller due to the complexity
and small size of new circuitry. This causes chips to increase
in price, slow down the move to new technology, and reduces
incentive to add more logic.[4] Redundancy in a circuit can
also be added in order to maintain yields but this proves costly
and effectively doubles the circuitry of a design.

The new idea presented is to have different levels of self-
repair in order to severely lower the effect of this fault on the
output. Since this will be mainly focused on multimedia, a
low amount of error will seem perceivably gone. below shows
two different pictures of Lena where a fault was injected when
converting this image from a PPM format to JPEG. As one
can see, the final quality depends on where the fault is located.
Errors injected into the higher bit values obviously gave a
clearer distortion in the picture while errors injected into lower
bit values seemed negligable.

Fig. 2. Image of Lena with faults injected at different places.

Looking at these figures, it seems obvious there should be
different paths to repairing the hardware errors. When errors
are small enough to have the encoded image be indescernible
from the orginal image, nothing should be done. For larger
errors, the use of hardware shifters could be used internally
to shift the additions so that the fault can only effect the LSB
and nothing larger. Lastly, if the error proves too large, loop
unrolling could be done in software to move the computations
from SSE units to general purpose units. This, of course, has
the trade-off between speed and error correction.

III. MULTIMEDIA ENCODING

The underlying lossy methods in multimedia encoding along
with a human’s insensitivity to small variation in color and
sound make these type of applications very resilient to errors.
These methods include chroma subsampling, DCT, and quanti-
zation for video and image encoding, and framing and motion
vectors in video encoding.

The first step in JPEG and MPEG encoding is to change the
color space from RGB to YUV.[8] This first step is neccesary
to lower the amount of data held in the image or video
frames while keeping quality relatively high. While RGB
splits each pixel into seperate values of red, green, and blue,
YUV splits pixels in terms of luma(Y) and chrominance(UV).
Luma describes the light differences within a picture while
chromninance describes the color within the picture. Since
the human eye perceives brightness at a higher level than
color changes, chrominance can be downsampled.[10] The
most popular YUV format is 4:2:0, which keeps luma values
for every pixel but reduces chrominance values to just one
sample every 4 pixels. Below is a sample of a 4:2:0 YUV
photograph split into Y, U, and V values respectively.

Fig. 3. Y samples are kept at higher sampling rates than U and V with little
visual loss.

Most mainstream multimedia encoders also use the discrete
consine transform (DCT) to futher reduce the size of the multi-
media file. The DCT converts data from the time space domain
to the time frequency domain. JPEG and many video encoders
like H.264, MPEG-1, MPEG-2, and WMV2 use the DCT
before quantization. In addition, DCTs are relatively effective
at pushing the vital signal information to small areas in the
macroblock. The image is usually split in 8x8 pixel blocks
to which the DCT is applied. Pushing all the information to
the smaller frequencies helps when applying a quantization.
While JPEG applies this for the whole image, video formats
only need to apply this to any residual frames that are left
after getting rid of spacial and temporal redundancy.

After the DCT is applied, the data can then be quantized
inside a macroblock. Quantization maps the range of possible
values to a smaller set of values. Because the DCT shifts most
of the data to the lower frequencies, the higher frequencies
often have values small enough to map to 0. [10] This is
helpful to reduce to amount of data afterwards when applying
entropy encoding because it reduces huge pools of zero values
to just a pair showing how many 0’s are inbetween two non-
zero numbers.

Before the DCT is applied to video frames, temporal and
spatial redundancy is removed. The temporal model exploits
redundancy because there is a high correlation between frames
in a video that are close to each other. This is especially true
in video with high framerates since, usually, little changes
occur within 1/25th of a second. Below, the third frame shows
the differences between two sequential frames in a video. In
addition, the spatial model exploits redundancy because there
is a high correlation between pixels close to each other within
a frame.



NORTHWESTERN UNIVERSITY COMPUTER ENGINEERING, AUGUST 2009 3

Fig. 4. The differences between two sequential frames in a video is shown
in the third frame.

In video, frames are first split into different types of frames.
These frames are I-frames, P-frames, and B-frames. [10] I-
frames are very much like normal JPEG images as the encoder
stores all the data of the frame. On the other hand, P-frames
only store data that is changed from the I-frame preceding
it. Also, B-frames only contain data different from frames
preceding and following it. B-frames are allowed to take data
from I-frames and P-frames. The changed data in I and B
frames are stored in the form of a residual image and motion
vectors. Since there is movement within sequential frames,
images go through motion estimation. Motion estimation takes
macroblocks within a seperate frame and tries to match this to
a macroblock within the current frame. This method tries to
match a macroblock as concisely as possible and, once found,
only stores a motion vector from the previous macroblock to
the current one.

Fig. 5. The first frame is an I-frame and the second is the P-frame following
it. The arrows shown are motion vectors stored inside the P-frame.

These motion vectors only contain data of the direction and
distance of one macroblock to another. Above, two sequential
images are shown, one of an I-frame, and one of a P-frame
with motion vectors shown. Of course, not all parts of an
image can be compensated this way because 3D objects can
move out of the frame or turn. Because of this, the differences
that cannot be compensated for are stored within a residual
image.

IV. RESULTS

A bash script for Ubuntu was created to profile the encoding
and decoding of different multimedia formats to another.
The open source program used to decode and encode videos
and images is FFMPEG. The profiling tool used is OProfile.
This tool is used to find SIMD heavy procedures within the
program. The different conversions tested are shown in Table
1.

The bash script was set up to go through a loop of a
specific encoding or decoding procedure 1000 times in order
to capture a concise picture of the routines used within the

TABLE I
CONVERSIONS PROFILED FOR FINDING SIMD HEAVY PROCEDURES

Conversion Type Converting From Converting To
Encoding JPEG PPM

Decoding PPM JPEG

Encoding YUV DRC

Encoding YUV MPEG1

Encoding YUV MPEG2

Encoding YUV WMV 8

Encoding YUV H.264

Encoding YUV MPEG4 Part 2

conversions. The results were then redirected into a text file.
Since the profiler took in all instances of all the applications
being run at the current time, the profiler was set up to
only record samples taken from FFMPEG. In order to profile
FFMPEG’s procedures, Debug symbols had to be enabled. A
debug symbol contains information of where the give code
within the program was executed and ties it to the source files.
This is helpful when trying to debug a program and finding
faults within it. Also, in a seperate directory, all the assembly
code that is tied with the debug symbols are redirected into
seperate files.

A python script is then run to compare each debug symbol
caught by the compiler to a list of debug symbols that are
known to carry SIMD assembly instructions. Since these
conversions were done on an x86 machine, MMX and SSE in-
structions were the SIMD instructions looked for. The python
script then redirects this content into a seperate file. The
procedures that were tagged with the debug symbols were then
listed out and a brief description was given to what they did
in the encoding/decoding steps.

Fig. 6. An example of the final output given through the scripts. The
codec used is first listed, then the debug symbol, then the location and any
information pertaining to the procedure.

V. CONCLUSION

The hope for these results is to use it to further guide the
development of an auto-correcting algorithm to use within
software to correct any hardware faults that may occur. This
will help greatly in the hardware industry because hardware
that may have been considered faulty can be still used with



NORTHWESTERN UNIVERSITY COMPUTER ENGINEERING, AUGUST 2009 4

slight modification inside the code or adding extra non-
trivial hardware. Using simulations and a better understanding
of multimedia encoding, the hope is to first extend these
improvements to multimedia applications. The reason for this
is that multimedia has a good fault tolerance due to a human’s
visual perception. The ultimate goal is to further extend this
into other areas that have a lower fault tolerance once these
processes have matured.

REFERENCES

[1] Li, Xuanhua and Donald Yeung. Application-Level Correctness and its
Implact on Fault Tolerance. IEEE DSD ’05 Conference, 2005.

[2] Roy, Kaushik and Georgios Karakonstantis. Design Methodology to trade
off Power, Output Quality and Error Resiliency:Application to Color
Interpolation Filtering. IEEE, 2007.

[3] Lee, Kuen-Jong and Tong-Yu Hsieh. Reduction of Detected Acceptable
Faults for Yield Improvement via Error-Tolerance. EDAA, 2007.

[4] Breuer, Melvin. Multi-media Applications and Imprecise Computation.
High-Performance Computer Architecture, Feb. 2007.

[5] Lu, Chia-Lin and Melvin A. Breuer. A systematic methodology to employ
error-tolerance for yield improvement. IEEE, 2008.

[6] Feig, Ephraim and Shmuel Winograd. Fast Algorithms for the Discrete
Cosine Transform. IEEE Transactions on Signal Processing, 1992.

[7] Mccluskey, Edward and Chao-Wen Tseng. Stuck-Fault Tests vs. Actual
Defects. IEEE International Test Conference, 2000.

[8] Kerr, Douglas. Chrominance Subsampling in Digital Images. Pumpkin
Issue 1, November 2, 2005.

[9] cohen, William. Tuning Programs with Oprofile. Wide Open Magazine,
2004.

[10] Richardson, Iain. H.264 and MPEG-4 Video Compression. Wiley Eng-
land, 2003.


