Automating Instruction Selector Generation in

Jikes RVM

Chujiao Ma, Adam Fidel, Tim Richards, J. Eliot B. Moss
August 26, 2009

Abstract

As the compiler evolve with the modern technology, general tools to
easily develop compiler architecture becomes a necessity, especially for
architectural and IR extensions. While there are existing general and
framework-independent tools for compiler front-end, such tools do not
exist for back end. Such tools for back-end generation is difficult because
it will need to work for a wide variety of intermediate representations
(IRs) and targets.

For this, we propose Gist, a universal program that takes in a com-
piler IR and a machine instruction set architecture and generate general
instruction selection patterns that can then be adapted to any compiler
framework. More specifically, the focus of this paper is on generation
instruction selectors for Jikes RVM baseline compiler and PowerPC archi-
tecture.

1 Introduction

Innovation in micro-architecture and experiments in novel extensions require
tools that allow compiler writers to easily design different compiler components.
While numerous tools exists for developing compiler front-end functions such as
parsing and syntax tree construction, there are limited number of tools for
dealing with back-end tasks. The main component of the compiler back-end is
the instruction selector, which is responsible for selecting what instruction to
use, such as add, load, store and such. Currently the instruction selector in
various compilers must be handwritten, involving thousands of instructions and
prone to human error. While the selector can be automated, there are no easy
way to automate instruction selectors that are compiler framework independent.
This, is the problem we are trying to solve with Gist.

Gist is a tool intended for automatic generation of compiler selectors that
can easily be adapted to any compilers. It is universal because it automatically
generates instruction selection patterns for any combination of target instruction
set and compiler IR. It is also easy to use because the compiler writer only have
to write an adapter, which is magnitudes simpler than an instruction selector,

in order to use GIST. It takes in IR description and target description, both
written in the same description language, then outputs a generic description of
instruction selection, which is tailored to a specific compiler, Jikes RVM baseline
compiler in this case, through an adapter.

2 Background

There has been considerable progress made in automating the construction of
compiler front-end components. As for tools to automate construction of com-
piler back-end, there are a few that made the effort to be compiler and lan-
guage independent. One of the tools is the bottom-up rewrite system techniques
(BURS), generate pattern in a given expression tree using tree rewriting. While
the process is independent of the IR and ISA, the pattern specifications are
dependent on both, which makes it difficult to be applied to other compiler
frameworks. Fraser ([4]) uses a rule based production system to generate code
generators automatically but it is compiler dependent. Gist, on the other hand,
is language and compiler independent since both the IR and ISA descriptions
are written in a framework neutral language, CISL. CISL is specifically designed
for the automatic generation of simulators and compiler back-end. It is a class-
based language with a Java style syntax aimed at simplicity and extensibility.

The compiler we are currently focusing on is Jikes RVM baseline compiler.
Jikes Research Virtual Machine is open source and used for experimenting with
virtual machine technologies, therefore an appropriate option for testing auto-
matic instruction selection generation. The compiler it uses is called the baseline
compiler, which is a non-optimizing just-in-time compiler. Next, we will show
how Gist works, run and test it in the baseline compiler.

2.1 How Gist Works

Gist takes in compiler IR instructions and the target architecture descriptions,
both of which are written in the framework neutral language, CISL. Figure 1
shows an example of the target description, iadd from PowerPC, and Figure 2
shows iadd from baseline compiler, both described in CISL.

instruction class add extends XOForm_RT _RA RB({
fun encode() {
OPCD = 31;
X0 =266;
}
fun effect() {
R[RT] = R[RA] + R[RB];

Figure 1: Target description for GIST (PowerPC).

instruction class iadd extends ByteCode {
fun encode() {
op = 96;
}
fun effect() {

var word_t a = S.slot[direct{spTopOffset)];
var word_t b = S.slot[direct(spTopOffset + 4)];

S.slot[direct(spTopOffset+ 4)]=a + b;
}
}

Figure 2: Compiler description for GIST (Jikes RVM Baseline compiler).

After covering most of the baseline compiler and PowerPC descriptions, we
input both files into Gist. Gist uses a heuristic search to produce multiple
matches for each baseline compiler and PowerPC description. For each match,
the sequence with the fewest instruction, assumed to be the most efficient, are
selected to be part of the final output. For descriptions with no matches, no
output is generated. After Gist finished matching the descriptions, it produces
an XML file with generated outputs for the description. the XML is a simple and
generic format that is compiler and language independent. As shown in Figure
3, the machine descriptions in XML format are processed by compiler-specific
adapters to produce instruction selector components that can be plugged in to
an existing framework of the compiler.

<pattern>
<source> Automatically generated using Gist
<instruction name="jadd"> @Override
<param hame="op"> protected final void emit_iadd(){
<value>96</value> asm.emitLWZ(T0, 4+spTopOffset, 1);
</param> asm.emitLWZ(T1, spTonOffset, 1);

asm.emitADD(T2, TO, T1);
asm.emitSTW(T2, 4+spTopOffset, 1);

. ;‘" '"s";' EAT:» , spTopOffset += BYTES_IN_STACKSLOT;
source
Adapter }
<target>
<instruction name="lwz"> Original baseline compiler code in Jikes RVM

<param hame="D">
<value>spTopOffset</value> @Override
</param> protected final void emit_iadd(){
poplnt(T0);
i ; RopInt(T1);
</instruction> asm.emitADD(T2, TO, T1);

</target> pushint(T2);
</pattern> } b

Figure 3: The adapter that takes the generic GIST outputs and formats it for
a specific compiler framework.

To use Gist on a specific compiler, all that the compiler programmer have to
do is to write an adapter that essentially parse the XML file into the format of

the instruction selector for that specific compiler, which is much less intensive
than writing thousands lines of code. In this case, we wrote an adapter parses
these patterns and generates code to be used in Jikes RVMSs baseline compiler.

Compiler

High Level y Back Target code:
Language : Tterm - . ,ppcg '
s del: - Parsing TP -Optimization
(Source code): -Abstractsyntax tree -Code generation AR
& construction -Etc.
-lava - Etc.

-Instruction

Selector
Compiler IR

Description (CISL)

Store Map o - t

larect ——3 (Gist | = | Adapter

Description {CISL)

Figure 4: Diagram of the gist process and how it fits in the compiler.

Figure 4 illustrates how Gist fits in with respect to the compiler. Gist is
independent of the compiler framework and automatically generates machine
descriptions that are language and compiler independent. The compiler writer
writes an adapter that tailors the results into the format required by the com-
piler framework. Then the output of the adapter is plugged into the compiler,
replacing the original handwritten machine descriptions.

2.2 Tests and Results

The goal of Gist is to replace the instruction selector component of the compiler.
As such, we will show the effectiveness of the generated instruction selector
by comparing its results when plugged into existing framework with results of
the original instruction selector. Currently Gist is able to cover 69 % of the
bytecodes in the baseline compiler. While this does not seem to be much, the
bytecode covered most of the commonly used descriptions. Of the remaining
uncovered bytecodes, most of them rely on runtime information, which cannot
be statistically matched. To demonstrate that the instruction selector generated
by Gist does not hinder the efficiency of the compiler,we decided to test the
runtime of the original instruction selector, and the instruction selector with
components replaced by Gist.

Since Jikes RVM is a JIT compiler, we used a standard Java runtime bench-
marks package called DaCapo. To confirm the validity of the results, we did
ten iterations of all benchmark tests for the original implementation and the
Gist generated instruction selector. The runtime slowdown of the generated vs.
original, averaged over ten trials, is shown below in Figure 5.

While the generated instruction selector performed better in some tests as
shown by the graph, it is small enough to be statistically insignificant and the

Jikes RVM - PPC Instruction Selector Performance

102
=
3
g 101
3
=)
w
[}
E &
£
c
8
2 099
&
0.98

antlr bloat eclipse jython lusearch luindex xalan

Figure 5: Jikes RVM-PPC slowdown of the DeCapo benchmarks for generated
vs. original (lower = better).

generated instruction selector did not cover and replace all descriptions.

2.3 Conclusion and Future Work

This demonstrated that Gist perform just as well as the original selectors. Gist
does not hinder the performance of the compiler while being easy to use, by-
passing the tediousness and human error-prone problem of the original selector.

Gist is more universal than prior works and outputs components that match
the performance of those in existing compilers. In addition to expanding the
bytecode currently covered for the Jikes RVM and PowerPC instruction selector,
we would also like to extend Gist to other compilers and ISAs, which currently
includes LCC, MIPS, ARM and such.

References

[1] J. Eliot B. Moss, Trek Palmer, Timothy Richards, Edward K. Walters II,
Charles C. Weems. CISL: A Class-based Machine Description Language for
Co-generation of Compilers and Simulators. International Journal of Parallel
Programming, 2005.

[2] J. Eliot B. Moss, Trek Palmer, Timothy Richards, Edward K. Walters II,
Charles C. Weems. CMDL: A Class-based Machine Description Language for
Co-generation of Compilers and Simulators. IPDPS Workshop on Parallel
and Distributed Computing Issues in Next Generation Software, 2004.

[3] J. Eliot B. Moss, Charles C. Weems, Timothy Richards. The CoGenT
Project: Co-Generating Compilers and Simulators For Dynamically Com-
piled Languages. IPDPS Workshop on Parallel and Distributed Computing
Issues in Next Generation Software, 2003.

[4] C. W. Fraser. Automatic Generation of Code Generators. PhD thesis, Yale
University, 1977.

