Improving Probability Estimation Trees for Ranking

Rivka Levitan, Haimonti Dutta

Center for Computational Learning Systems at Columbia University, New York

rlevitan@cs.columbia.edu,

haimonti@ccls.columbia.edu

Abstract

We suggest an algorithm to improve the
performance of probability estimation trees in
producing class probability predictions for
ranking, specifically by reducing the occurrence
of ties. To more accurately reflect the
probability of class predictions, we weight each
leaf by the proportion of training instances that
fall within it. To eliminate the problem of ties,
we implement a kernel density estimate at the
leaf.

1. Introduction

Decision tree learning algorithms are
commonly used in machine learning for
classification problems. A tree is defined as a
set of logical conditions on attributes; a leaf
represents the subset of instances corresponding
to the conjunction of conditions along its
branch, or path back to the root. An instance
being classified is passed along the tree to a leaf
and is assigned the majority class label of that
leaf.

For many applications, it is useful to order
instances, which involves assigning them a
rank, rather than a class label. For example, a
web-page recommender may want to order web
pages by the likelihood of their being of interest
to the user, instead of classifying them as “of
interest” and “not of interest.” A simple
approach to ranking is to estimate the
probability of an instance's membership in a
class, and assign that probability as the
instance's rank. A decision tree can easily be
used to estimate these probabilities. If a leaf

node contains class frequencies n,, n,..., n,. the
probability that an instance falling in that leaf

n.
belongs to class i can be defined as Z

n;

Decision trees acting as probability
estimators, however, are often observed to
produce bad probability estimates. Specifically,
every instance in a node is assigned the same
probability, resulting in a proliferation of ties,
which reduces the results' usefulness for
ranking. Sparse training sets may also lead to
skewed estimates. Most developments in
decision tree learning algorithms have aimed at
improving classification accuracy rather than
probability estimates. We explore two
techniques for producing improved probability
estimates.

2. Prior Work

Cohen et al. [1] discuss learning to order based
on feedback in the form of preference
judgments, or statements that one instance
should be ranked above another, rather than
probabilities of class membership, because
preference information may be more natural
and easier to obtain than the information
necessary for classification. Cao et al. [2]
present the problem of ranking as a listwise
rather than pairwise problem, and employ
Neural Network and Gradient Descent as model
and algorithm in their learning method.

Provost and Domingos [3], however, defend
the use of probability estimation trees, noting
that the inaccurate probabilities are at least
partially the result of algorithms that maximize

mailto:rlevitan@cs.columbia.edu
mailto:haimonti@ccls.columbia.edu

classification accuracy and minimize tree size,
while larger trees are better for calculating
probabilities. They show that two simple
methods, Laplace correction and bagging,
substantially improve probability-based
ranking, and that pruning degrades it.

Ferri et al. [4] show that standard splitting
criteria aimed at increasing classification
accuracy do not necessarily produce good
probability estimates. They suggest a new
splitting criterion based on probability ranking,
the AUC-splitting criterion.

Smyth et al. [5] suggest a new smoothing
method that considers all the frequencies from
root to leaf, a new splitting criterion based on
the minimum squared error of the probability
estimates, and a pruning criterion that can
reduce the size of a tree without degrading the
quality of the probability estimates.

Existing work has focused on improving the
efficiency and accuracy of probability estimates
produced by decision trees. However, little has
been done to address the problem of dealing
with ties among instances, making probability
estimation trees difficult for use as rankers. Our
work focuses on this issue.

3. Weighted Splits

To increase the accuracy of the predictions, we
weight each node by the proportion of instances
it contains. The intuition is that if a large
number of instances fall in a node, the
classification rule it represents is likely to be
significant, and the probability estimates should
definitely be higher. The weight of a node i
with cardinality c; is defined as

C.

l

w=w

parent (i) *
parent (i)

Greater significance is therefore given to
splits involving large proportions of instances,
while splits involving small proportions are
devalued accordingly. An example is given in
Figure 1.

b instances: 2+, 3-

weight = 5/20
b(4) =2,5_1
5720710
_) 305 3
7 instances: 3+, 4- 8 instances: 6+, 2- p(-) = *%0" 0
weight = 7/15 weight = 8/15
20,053 4)=6,8,15 3
P+ 7' 5720720 P 87157207 10
47051 2.8 5.1
p(-) =7"55%%0"5 PC) =5*5"0" 10
Figure 1

4. Kernel Density Estimation

One problem with calculating the estimated
probability as n/N, where n is the number of
instances of the specified class at a leaf and N is
the total number of instances, is that pure nodes
with a small number of instances will be
assigned the same probability as pure nodes
with a large number of instances. This is
especially problematic for ranking, since it will
result in many ties, and instances with the same
probability can not be ordered.

The problem is wusually addressed by
smoothing the probability estimates to less
extreme values. The most commonly used
smoothing method is the Laplace estimate,
which calculates the expected probability as

n+1

N+C
where C is the total number of classes. In effect,
it incorporates a prior probability of 1/C for
each class. The use of the Laplace estimate is
widespread and has been found to be extremely
effective in improving classification
performance.

Another smoothing method is m-estimate,
which is defined as

n+mXp
N+m
The probability p is the expected probability
without prior knowledge, and is either

calculated as 1/C or estimated from the training
data.

While the Laplace and m corrections
have been shown to significantly improve
classification performance, we found that they
do little to resolve ties in the probability
estimates. We implemented the m-estimate in
Weka [6]. We examined the results of the J48
decision tree on the Spambase dataset from the
UCI Machine Learning Repository [7], using
Laplace, m-estimate, and no smoothing.

We found that while smoothing did
reduce the occurrence of ties, the presence of
ties was still significant. For 1380 instances, no
smoothing resulted in only 22 distinct
probability estimates. Applying the Laplace
estimation resulted in 37 distinct values, while
the m-estimate yielded 38. These results,
although they do represent a slight
improvement, clearly demonstrate the need for a
better mechanism to resolve ties. To address this
issue, we apply a kernel density estimation at
the leaf, as described by Smyth et al. [5].

First, a kernel density bandwidth estimation
method is run on the training data to select
bandwidths /4 for each of the attributes k and for
each of the classes w;. A decision tree is then
generated from the training data using a
standard decision tree learning algorithm.

This decision tree can then be used to
calculate the class probability prediction for a
test instance in the following way: The test
instance is passed down the tree to a leaf. At the
leaf, a local density estimate is generated for
each class:

Axlw ZH—Kx_x)

N, S e by hy
N; is the number of training points
belonging to class w;. For each of these training
points, the product is taken only over the
attributes tested in the path from the root to the
leaf.
The class probabilities are then estimated
using Bayes' rule and the density estimates:

Pl lx) =
> Filx)p(w)

p(w;) represents the prior probabilities of
each class, estimated from the data in the usual
way.

5. Conclusion

We present an algorithm for improving the
probability estimates generated by decision
trees. Our method reflects the probability of
each class prediction more accurately by
weighting each leaf with the proportions of the
instances that fall in it. Furthermore, we reduce
the occurrence of ties by implementing a kernel
density estimation at the leaf. This is extremely
important for ranking.

Our algorithm learns a standard decision
tree, storing information about the proportions
of each attribute split and weighting the leaves
recursively with these proportions. When an
instance is passed to a leaf, the instance’s
attributes are used to generate a kernel density
estimation, which is used to calculate its
probabilities of class membership. The
algorithm should produce probability estimates
that are more suitable for ranking, because they
reflect the data more accurately and are not
susceptible to ties.

We implemented our algorithm in Weka.
The code is attached as Appendix A. We are
continuing to implement the code so that we
can test the algorithm on datasets from the UCI
Machine Learning Repository, in order to
obtain empirical results for the performance of
the algorithm.

References

[1] Cohen, W.; Schapire, R.; Singer, Y.:
“Learning to Order Things,” Journal of
Artificial Intelligence Research 10 (1999)
243-270, 1999.

[2] Cao, Z. et al.: “Learning to Rank: From
Pairwise Approach to Listwise Approach,”
Microsoft technique report, 2007.

[3] Provost, F.; Domingos, P.: “Tree Induction
for Probability-based Ranking,” Machine
Learning 52:3, pp. 199-215, 2003.

[4] Ferri, C., Flach, P., & Hernandez-Orallo,
J. : “Learning Decision Trees using the
Area Under the ROC Curve,” in C.
Sammut; A. Hoffman (eds.) “The 2002
International Conference on Machine
Learning” (ICML2002), Morgan
Kaufmann, pp. 139-146, 2002.

[5] Smyth, P.; Gray, A.; Gray, E.; Fayyad, U.
“Retrofitting Decision Tree Classifiers
using Kernel Density Estimation.” Morgan
Kaufmann, San Francisco, CA 1995.

Appendix A:

Code:

We modified WEKA's ClassifierTree to apply an M-estimate and to implement our algorithm. Our
changes and insertions are marked with “Rivka” in the comments.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

* 0% ¥ ok X ¥k X ¥ X X X X X X

~

~
* %

ClassifierSplitModel. java
Copyright (C) 1999 University of Waikato, Hamilton, New Zealand

*/
package weka.classifiers.trees.j48;

import weka.core.Instance;

import weka.core.Instances;
import weka.core.RevisionHandler;
import weka.core.Utils;

import java.io.Serializable;

*

/
Abstract class for classification models that can be used
recursively to split the data.

* * ¥ * X

@author Eibe Frank (eibef@cs.waikato.ac.nz)
@version S$Revision: 1.11 $

*

*/
public abstract class ClassifierSplitModel
implements Cloneable, Serializable, RevisionHandler {

/** for serialization */
private static final long serialVersionUID = 4280730118393457457L;

/** Distribution of class values. */
protected Distribution m distribution;

/** Number of created subsets. */
protected int m_numSubsets;

/**

* Allows to clone a model (shallow copy).
*/
public Object clone() {

Object clone = null;

try {
clone = super.clone();
} catch (CloneNotSupportedException e) {
}
return clone;
}
/[**

* Builds the classifier split model for the given set of instances.
*

* @exception Exception if something goes wrong
*/

public abstract void buildClassifier(Instances instances) throws Exception;

/**
* Checks if generated model is valid.
*/

public final boolean checkModel() {

if (m numSubsets > 0)
return true;
else
return false;

}
/[**

* Classifies a given instance.
*

* @exception Exception if something goes wrong

*/
public final double classifyInstance(Instance instance)
throws Exception {

int theSubset;

theSubset = whichSubset(instance);
if (theSubset > -1)

return (double)m distribution.maxClass(theSubset);
else

return (double)m distribution.maxClass();

}

/**

* Gets class probability for instance.
*

* @exception Exception if something goes wrong

*/
public double classProb(int classIndex, Instance instance, int theSubset)
throws Exception ({

if (theSubset > -1) {
return m distribution.prob(classIndex,theSubset);

} else {
double [] weights = weights(instance);
if (weights == null) {
return m _distribution.prob(classIndex);
} else {
double prob = 0;
for (int i = 0; i < weights.length; i++) {
prob += weights[i] * m distribution.prob(classIndex, i);
}
return prob;
}
}
}
/[**

* Gets class probability for instance.
*

* @exception Exception if something goes wrong
*/
public double classProblLaplace(int classIndex, Instance instance,
int theSubset) throws Exception ({

// System.out.println("classProbLaplace called in ClassifierSplitModel");
if (theSubset > -1) {

return m distribution.laplaceProb(classIndex, theSubset);

} else {
double [] weights = weights(instance);
if (weights == null) {
return m _distribution.laplaceProb(classIndex);
} else {
double prob = 0;
for (int i = 0; i < weights.length; i++) {
prob += weights[i] * m distribution.laplaceProb(classIndex,
i);
}
return prob;
}
}
}

public double classProbM(int classIndex, Instance instance, int theSubset)
throws Exception {

if (theSubset > -1) {
return m distribution.mProb(classIndex, theSubset, 4);
} else {
double [] weights = weights(instance);
if (weights == null) {
return m distribution.mProb(classIndex, 4);
} else {
double prob = 0;

4)

for(int i=0; i<weights.length; i++) {
prob += weights[i] * m distribution.mProb(classIndex, i,

}
return prob;
¥
}
¥
/**

* Returns coding costs of model. Returns 0 if not overwritten.
*/
public double codingCost() {

return 0;

}

/[**
* Returns the distribution of class values induced by the model.
*/

public final Distribution distribution() {

return m distribution;

}

/**

* Prints left side of condition satisfied by instances.
*

* @param data the data.
*/
public abstract String leftSide(Instances data);

/[**
* Prints left side of condition satisfied by instances in subset index.
*/

public abstract String rightSide(int index,Instances data);

/**
* Prints label for subset index of instances (eg class).
*
* @exception Exception if something goes wrong
*/
public final String dumpLabel(int index,Instances data) throws Exception {

StringBuffer text;

text = new StringBuffer();
text.append(((Instances)data).classAttribute().

value(m _distribution.maxClass(index)));
text.append(" ("+Utils.roundDouble(m distribution.perBag(index),2));

if (Utils.gr(m_distribution.numIncorrect(index),0))

text.append("/"+Utils.roundDouble(m distribution.numIncorrect(index),2));
text.append(")");

return text.toString();

}

public final String sourceClass(int index, Instances data) throws Exception {

System.err.println("sourceClass");
return (new StringBuffer(m distribution.maxClass(index))).toString();

}
public abstract String sourceExpression(int index, Instances data);

/**
* Prints the split model.
*
* @exception Exception if something goes wrong
*/
public final String dumpModel (Instances data) throws Exception {

StringBuffer text;
int i;

text = new StringBuffer();

for (i=0;i<m _numSubsets;i++) {
text.append(leftSide(data)+rightSide(i,data)+": ");
text.append(dumpLabel (i,data)+"\n");

}

return text.toString();

¥

/**

* Returns the number of created subsets for the split.
*/

public final int numSubsets() {

return m_numSubsets;

}

/**
* Sets distribution associated with model.
*/
public void resetDistribution(Instances data) throws Exception {

m distribution = new Distribution(data, this);

}

/[**
* Splits the given set of instances into subsets.
*

* @exception Exception if something goes wrong
*/

public final Instances [] split(Instances data)

throws Exception {

Instances [] instances = new Instances [m numSubsets];
double [] weights;
double newWeight;
Instance instance;
int subset, i, 3j;

for (Jj=0;Jj<m numSubsets;j++)

instances[j] = new Instances((Instances)data,
data.numInstances());
for (i = 0; i < data.numInstances(); i++) {
instance = ((Instances) data).instance(i);

weights = weights(instance);

subset = whichSubset(instance);

if (subset > -1)
instances|[subset].add(instance);

else
for (j = 0; j < m_numSubsets; j++)
if (Utils.gr(weights[j],0)) {
newWeight = weights[j]*instance.weight();
instances[j].add(instance);
instances[j].lastInstance().setWeight (newWeight);
}
}
for (j = 0; J < m_numSubsets; j++)

instances[j].compactify();

return instances;

}

/**

* Returns weights if instance is assigned to more than one subset.
* Returns null if instance is only assigned to one subset.

*/

public abstract double [] weights(Instance instance);

/**

* Returns index of subset instance is assigned to.

* Returns -1 if instance is assigned to more than one subset.
*

* @exception Exception if something goes wrong
*/

public abstract int whichSubset(Instance instance) throws Exception;

