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1. Introduction  

Epilepsy is a neurological disorder in which patients suffer from seizures, or brief periods 
of excessive electrical activity in the brain. The majority of patients can have their seizures held 
in check by anti-seizure medication; in more extreme cases, surgery is performed to remove the 
area where the seizures originate. For a minority of patients, however, none of these measures 
are effective, and they suffer from frequent seizures which can be debilitating and cause 
permanent brain damage. [1] For patients such as these, and indeed all epileptics, an early 
warning system to predict the onset of a seizure and perhaps provide appropriate intervention 
before the seizure begins would greatly improve their quality of life. 

 Any successful seizure prediction algorithm must be able to detect patterns of interaction 
between different areas of the brain at and before the onset of a seizure. Seizures generally start 
in a particular part of the brain, different in each patient, known as the epileptogenic area. From 
there, the abnormal activity spreads through the brain as neurons fire in tandem, setting off 
neurons in other areas and sending a wave of electricity rippling across the brain. Determining 
whether neurons firing in one area of the brain affect the activity of another region can be crucial 
in charting the development pattern of a seizure. One method for measuring causal relationships 
is Granger Causality. This index measures the degree of correlation between two time-series.  
While Granger Causality is not absolute causality, it is a promising method for determining the 
influence of one area of the brain on another.  

 In our work, we used Support Vector Regression and Granger Causality to measure the 
likelihood of electrical activity in one part of the brain (represented by a particular channel in an 
EEG recording) affecting brainwave patterns in another. Our results are incomplete and therefore 
inconclusive, but seem promising.  

2. Related Work 

        A significant amount of work has been done on using Granger Causality to detect 
interaction between different regions of the brain. Baccala et al [ 2] used Granger Causality along 
with directed coherence to obtain a clearer picture of cortical interactions in mice. Hess, et al [ 3] 
used a variant of Granger Causality (time-variant GC) to successfully detect interdependencies 
between brain regions.  Winterhalder et al. [ 4] compared Granger Causality to partial coherence, 
partial directed coherence, and directed transfer function. Roebroeck et al. [ 5] used Granger 
Causality mapping to study directed influence between neurons. Granger Causality has also been 
successfully used in economics [ 6,7,8,9]. 

 In light of the successful use of Granger Causality to detect interactions between brain 
regions, we decided to choose this method for use in our causation analysis of a multichannel 
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EEG. While this has been done before, we wanted to determine whether using support vector 
regression in our work would yield positive results.  

 

 

3. Methods 

3.1. Support Vector Regression 

  Support Vector Regression (henceforth SVR) is a method of using Support Vector 
Machines, a common classification algorithm, to solve linear regression problems. In SVR, the 
goal is to find the line that best separates the data points in the series into a specified number of 
classes, while maximizing the margin between the classes [10, 11, 18]. 

  Often, such a line is not easily drawn in a linear plane, so a kernel function is used to 
convert the data into a higher-dimension plane where linear regression can be easily performed.  
[ 12] The cost parameter c determines the tightness of the margin and the tradeoff between 
accuracy and generalizability. [13] 

 

3.2 Granger Causality 

 Granger Causality (GC) is a method for measuring causality between time series 
developed by Clive W. J. Granger.  

      To calculate the Granger Causality for two data series x and y; that is, whether y Granger-
causes x, the prediction accuracy of x is calculated. It is then compared to the prediction 
accuracy of the same time series x with values from time series y added to it. If the new series,   
x + y, produces more accurate predictions than x alone, y can be said to Granger-cause x. 
Prediction accuracy is measured by the variance of the error of time series x, as compared to that 
of the new series + y, u u x sing the eq ation 

                             ln 
  

 ) 

where x and y are time series, var(x) is the variance of the error of x alone, and var(y-> x) is the 
variance of the error of the series x + y. [3] 

 It should be noted that Granger Causality is not absolute causation. There are myriad 
factors that can influence the improvement in prediction error; the addition of y may have no 
impact. However, strong Granger Causality values do generally imply a high likelihood of 
correlation, if not causation, between the two time series [14, 3, 15, 16]. 
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3.3 Dataset 

      The dataset used was that of the University of Freiburg, Germany. [17] (See appendix A for 
details on prior unsuccessful attempts with other data sets.) Data from a 15-year old female 
patient with simple partial and complex partial seizures originating in the frontal lobe was used 
in our work. While ictal (before and during a seizure) and inter-ictal (between seizures, normal) 
recordings were available, the volume of the data was so large that we used only one set of ictal 
recordings for our very preliminary testing. The patient’s data consisted of several sets of files 
containing recordings from seizures, as well as at least 50 minutes of pre-ictal (immediately 
preceding the onset of a seizure) recording. Each set had 6 files, corresponding to the 6 channels 
of the EEG recording. Each file contained 921,600 data values, recorded at a sampling rate of 
256 Hz. 

3.4 Computation and Calculation of Granger Causality 

  The program used to process the data was written in Java and makes extensive use of the open 
source Machine Learning code of Weka, a Java ML program, version 3.6 [18].  The program 
read the data values from text files and converted them to the .arff files required by Weka, with 
100 data values in each sample. Then it used the various classification classes provided by Weka 
to perform support vector regression on the time-series in the file. (See Appendix B for details.) 
The regression generated a numeric prediction for the 100th value in each sample, then calculated 
the error for the sample; that is, the difference between the actual and predicted values.  

   We then calculated the variance of the error ov tire data set, using the formula  er the en

∑   
 

where V is the variance, e is the error for each instance, and n is the total number of instances in 
the data set. Note that we did not normalize the data; hence the simplified equation.  

 This process was repeated for every file in the dataset. Then, for every pair of files x and 
y, corresponding values of y were interspersed between the values in x, and every 100th value in 
x predicted using the expanded time series x +y. Then the program repeated the process, this 
time interspersing x-values between the values of y to produce the series y + x.  

To illustrate, consider the two time series x =  {0,2,4,6,8,10,12}and y = { 1,3,5,7,9,11,13}.  

First, support-vector regression is used on the first 6 values of x (0, 2, 4, 6, 8, 10) to try to predict 
the 7th value, (12), and the difference between the actual (12) and predicted values is recorded as 
the error. Then, the regression is repeated to attempt to predict the 7th value of y (13) and the 
resulting error recorded.  
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 The next step is constructing the merged time series x + y. This yields 
{0,1,2,3,4,5,6,7,8,9,10,11,12}, with the 7th value of y discarded. SV- regression is now 
performed on the newly joined time series to predict the last value, 12, and the prediction error 
recorded. The same thing is done to form the series y +x {1,0,3,2,5,4,7,6,9,8,11,10,13} and 
attempt to predict the last value, 13 (in this case, it is the 12, the last value of x, that is dropped).  

If the prediction error of x+y is lower than that of x alone, the Granger Causality measure for      
x + y is positive. The larger the positive difference between the two, the higher the GC-value is 
and the more likely it is that y Granger-caused x. The same holds true for y +x.  

 The above procedure is a rough explanation of the methods we used to derive Granger 
Causality values for each pair of files. Since each file contains 921,600 values, the time series is 
divided into 100-values slices and the regression repeated for each one; the error for each is 
calculated and used to derive the variance of the prediction error over the entire time series. 

 We then used the equation for Granger Causality given in section 3.2 to calculate the 
Granger causality for x + y and y + x.  This process was repeated for each pair of files in the set 
of 6 channels, 36 pairs in all, with the resulting Granger Causality values forming a 6 x 6 matrix. 
Obviously, determining whether a single channel impacts itself is nonsensical, so cells in the 
matrix with the same row and column number, that is, representing the impact of a said channel 
on itself, were filled in with a 0.  (Incidentally, due to the nature of the equation for Granger 
Causality, actually calculating the value of x + x would yield a 0 regardless.) 

4. Results 

   The program was run once for each of the following C – values: .001, .01, .1, 1.0, 10.0, and 
100.00.      sampling of the results can be found below.  

Table 1. Granger Causality, 
C-value 0.1 

The 0’s on the diagonal are 
placeholders, as described 
above; all other 0’s are the 
result of the regression. 
Values above 0 are 
highlighted. 

1 2 3 4 5 6
1 0 0.026 ‐0.009 ‐0.01 ‐0.016 ‐0.008
2 ‐1.057 0 ‐0.008 ‐0.007 ‐0.001 0.009
3 1.801 1.816 0 ‐0.004 ‐0.014 ‐0.004
4 0.241 0.238 0.25 0 0 ‐0.012
5 0.143 0.153 0.165 0.167 0 0.024
6 ‐0.057 ‐0.073 ‐0.044 ‐0.028 ‐0.034 0

 

 Table 2. Granger Causality,              
C-value 1.0                                     
The 0’s on the diagonal are 

1 2 3 4 5
1 0 0.068 0.193 0.013 0.16 0.103
2 ‐1.098 0 0.086 0.214 0.067 0.088
3 1.665 1.668 0 ‐0.045 ‐0.07 ‐0.088
4 0.168 0.208 0.153 0 ‐0.053 ‐0.021

6

5 0.086 0.098 0.091 0.081 0 ‐0.027
6 ‐0.013 ‐0.03 ‐0.018 ‐0.011 ‐0.016 0
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placeholders, as described above. Values above 0 are highlighted. 

 

 

 Several things are immediately evident from the results. First, there is very little 
difference between the values obtained using different C-values. This is more easily seen in the 
scatter plots below, where the red squares (C = 1.0 and 0.01, respectively) and blue diamonds 
(C= 0.1 and 0.001) closely overlap in all but three cases. While there is some fluctuation over the 
y-axis in some places, the values obtained using different C-values are generally quite close to 
each other.  

Figure 1. Granger Causality values for each pair of files; C-values 0.1 and 1.0.  
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Figure 2. Granger Causality values for each pair of file; C-values .001 and .01.  
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 Most of the values are relatively small, suggesting little or no correlation between the two 
channels tested. Some pairs, however, have values higher than 1, suggesting that a causative 
relationship exists between the two. In particular, the pairs 2 + 1 and 3 + 1 have values higher 
than 1.5, while the inverse pairs (1 + 2 and 1 + 3) have low or even negative values. This seems 
to indicate that channel 1 influenced both 2 and 3, but the impact did not occur in the reverse 
direction. 

   

 

5. Conclusions 

       The summer ended long before our program finished testing even one patient, so our results 
are severely limited. However, as discussed above, several of the channel pairs had high 
Granger-Causality values, suggesting that electrical activity in one of the channels influenced 
that of the other. Of course, such methods are limited by the fact that they only allow for 
bivariate analysis. Though we circumvented this limitation somewhat by testing all possible 
pairs, it is likely that the actual patterns of causation in epileptogenesis are significantly more 
complex than can be represented by only bivariate relationships. While using only Granger 
Causality lacks the sophistication and finer control of truly multivariate methods, our results 
show that using support vector regression with Granger Causality may be a promising direction 
for future research in the genesis of epileptic seizures.  
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Appendix A 

 The University of Freiburg dataset that we used was not our original choice. We began our 
research using the brainwave dataset of the University of Bonn (http://www.epileptologie-
bonn.de/cms/front_content.php?idcat=193). The dataset we worked with contained 100 files, each 
containing 4097 data values. We were under the misconception that the files contained simultaneous 
recordings from 100 channels of a multichannel EEG. Since each file contained far fewer values than 
those of the Freiburg dataset (4097 instead of 921,600) the program completed the testing of each file 
very quickly, and we were able to test all 10,000 pairs of files in a relatively short period of time. 
However, after working with this data for some time, we discovered that the files were not, as we had 
thought, simultaneous recordings from different channels of an EEG, but rather random recordings from 
different patients at various times. Obviously, this meant that the dataset was completely unsuited for our 
research, and we had to begin again using the Freiburg dataset described in the paper.  

 

Appendix B 

 The program we used to perform support-vector regression on the time series and calculate the 
Granger Causality values for the results was written in Java and made extensive use of the Weka open-
source Machine Learning software. The program used standard Java file processing classes to write the 
data values in each large file into a .arff file (the file type accepted by Weka) in groups of 100 (when 
performing the regression on a single time series) or 199 (when performing the regression on two merged 
time series; see section 3.4 above) values each.1 

                                                            
1 Note: the program can actually be customized to work with any size slice of values, but in our case we used 100. 

http://www.slideshare.net/gaetanlion/granger-causality-presentation
http://www.uh.edu/%7Ebsorense/gra_caus.pdf
https://epilepsy.uni-freiburg.de/freiburg-seizure-prediction-project/eeg-database
https://epilepsy.uni-freiburg.de/freiburg-seizure-prediction-project/eeg-database
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 The resulting .arff files were processed as follows: the DataSource and Instances classes2 were 
used to read the data from the .arff file and transform each group of values into an instance of the dataset, 
with the last value as the class label. The instances were then split into training and test sets, with a 70-30 
training-test split. The SMOreg and  RegSMOImproved classes3 were used to build and train the 
classifier using the training set, and then to classify each instance in the test set. The error for each 
instance was calculated as the difference between the actual and predicted value of the class label, and the 
variance of the error taken over the entire test set. This was repeated for every pair of files in the original 
dataset, as described in section 3.4. Granger Causality was calculated for each pair using the equation in 
section 3.2, and the results output to a text file.  

  

 
2 weka.core.converters.ConverterUtils.DataSource and weka.core.Instances, respectively. 
3  weka.classifiers.functions.SMOreg  and weka.classifiers.functions.supportVector.RegSMOImproved, respectively. 

 


