
DREU Research at Georgia Tech: Branch Prediction and Predication
Elba Garza

October 21, 2009: It has come to my
attention that it seems my final
report and presentation did not go
through the first time I submitted
it! Now, over a month later, I
realize this and would like to note
this. I’m so sorry!

Introduction

 For an estimated ten weeks, I
worked under the supervision of Dr.
Hyesoon Kim at the computer
architecture lab at the Georgia
Institute of Technology.
 This was my first research
opportunity I had done, so there was
quite a bit to learn. In every way
possible, I became a graduate
student. From finding an apartment to
making my own food and then staying
up late to finish lab reports, I did
it all.
 Also assigned to help me during
my time of research was graduate
student Minjang Kim. Sadly though, I
was not able to work with him much
due to his previous planned trips,
including a 3-week excursion to South
Korea. Due to this setback, I was not
able to get much into the productive
research that Minjang was heading.
Instead, I learned a great amount
about computer architecture.
 Through DREU’s questionnaires,
I purposely hoped to gain more
experience in the computer
architecture field because I felt I
had little exposure to it. Because of
that though, it took longer than
usual to catch up on field knowledge
that was basic for everyone else.
 So instead, this summer was a
wonderful time of reading up on
topics I’d never think of learning,
much less master. Specifically, my
summer entailed me learning about the
usage of branch prediction and
predication to prepare programs for
quicker execution and smarter usage
of memory and processing.

Basic Readings

 Before reading up on branch
prediction, Hyesoon had me refresh on
basic topics such as the C++ standard
template library and the x86 Intel
instruction set architecture. Because
Minjang’s project had extensive use
of containers and direct architecture
manipulation, this was absolutely
helpful.
 Accompanying the ISA reading
was an introductory lesson in
compilers, especially the idea of
control flow analysis.
 For the future learning of
branch prediction, I had to gain
knowledge in the definition of what a
basic block was, how they were
identified, and how one identify
blocks as dominators or
postdominators.
 From then, the readings flowed
on to branch prediction, in both
Gshare and bimodal form. Also, basic
predication, the converting of
control dependencies to data
dependencies, had to be learned.

Motivation

“Dynamic predication has been
proposed to reduce the branch
misprediction penalty due to hard-to-
predict branch instructions...

Predication eliminates branches and
therefore avoids the misprediction
penalty...”

- Kim, Joao, Mutlu & Patt, 2007
“Profile-assisted Compiler Support for Dynamic
Predication in Diverge-Merge Processors”

 Reading up on Dr. Kim’s recent
publications helped find the
motivation for looking into both
predication and branch prediction as
techniques for reducing misprediction
penalties.
 Dynamic predication, along with
basic branch prediction, can be used
together to lower the possibility of
executing a mispredicted branch.

 The misprediction penalty is
one that we ardently try to avoid
since it requires flushing of our
computing pipelines and the
restarting and recomputing of some of
our branch instructions.
 With branch prediction and
predication, one can more easily find
loops in programs, something that
would take too long to find with
other algorithms, such as tortoise-
and-hare searching.

Control Flow Analysis

 As stated before, my research
wasn’t as much hands-on as it was
educational. I have very little
physical results that I can show, but
what I’ve learned is something I’ll
have as knowledge forever.
 One of these important topics I
covered was control flow analysis.

 Instructions can be separated
into basic blocks or nodes, (A, B,
C...) in a control flow graph. To
identify basic blocks in our
programs, one can follow these simple
rules, as given in the “Dragon Book”
by Aho & Company:

There is a directed edge from one basic block 1 to 2
another if:

 1. There is a branch from the last statement of
1 to the first
 statement of 2, or

 2. Control flow can fall through from 1 to 2
because:
 i. 2 immediately follows 1, and
 ii.1 does not end with an unconditional branch

 With such rules, source code
such as the code below can be
separated into its respective
branches:

begin
 prod := 0;
 i := 1;
 do begin
 prod := prod + a[i] *
b[i];
 i = i+ 1;
 end
 while i <= 20
end

Therefore, this source code has the
following address code:

(1) prod := 0
(2) i := 1

(3) t1 := 4 * i
(4) t2 := a[t1]
(5) t3 := 4 * i
(6) t4 := b[t3]
(7) t5 := t2 * t4
(8) t6 := prod + t5
(9) prod := t6
(10) t7 := i + 1
(11) i := t7
(12) if i <= 20 goto (3)

(13) …

 Addresses (1), (3), and (13)
represent the starts of new basic
blocks created under the rules of the
Dragon book.
 With the creation of basic
blocks, one can easily discern
dominators within the control flow
graph.

By definition,

A node, a, in a Control Flow Graph dominates a node,
b, if every path from the first node to node b goes
through a. It can be said that node a is a dominator
of node b.

The dominator set of node b, dom(b), is formed by all
nodes that dominate b.

Also: by definition, each node dominates itself,
 therefore, b ∈ dom(b).

Definition: Let G = (N, E, s) denote a flowgraph,
where:
 N: set of vertices
 E: set of edges
 s: starting node.
 and let a ∈ N, b ∈ N.

1. a dominates b, written a ≤ b, if
 every path from s to b contains a.

2. a properly dominates b, written a < b, if
 a ≤ b and a ≠ b.

3. a directly dominates b, written a <d b if:
 a < b and there is no c ∈N such that a < c < b.

In observing these dominators, one
can do as one great lecture on this
topic described:

“Imagine a source of light
at the start node, and that
the edges are optical
fibers

To find which nodes are
dominated by a given node a,
place an opaque barrier at a
and observe which nodes
became dark.”

Then following the later
instructions:

“To find which nodes are
dominated by a given node a,
place an opaque barrier at a
and observe which nodes
became dark.”

 For example, if we wished to
see which nodes are dominated by Node
1, we place the opaque barrier there:

 All the nodes darkened by the
barrier are nodes who have Node 1 as
a dominator.
 Here is the technique used on
Node 3:

 The CFG shows that Node 3
dominates nodes 3, 4, 5, 6, 7, 8, and
9. Note though, that Node 10 is not
darkened, because there is still a
path present from Node 2 to Node 10
to maintain it “lit”.
 Using the definition of
dominators, one can infer what a
postdominator is.

 In this control flow graph,
Node H can be recognized as a
postdominator since rather than a
path from the beginning always going
through H, all paths at some point
converge to it. In other words, all
paths eventually lead to H.
 Why are postdominators
important? They are absolutely key
because they are the foundation for
which we are trying to identify loops
in Minjang’s project. Postdominators
are noted to be present at the end of
loops, and our tracer tool then
analyzes and searches for
postdominators are possible signals
for loops.

Branch Prediction

 Branch prediction emerges from
control flow analysis as a method to

better predict the movement of a
program.
 In basic branch prediction, an
array is used to keep record of
predictions of whether a branch is
taken (true) or not (false). Indexing
is done through the usage of the
branch PC:

 The actual result of the branch
is then recorded and our next
prediction changed accordingly. For
example, if we guess correctly that a
branch is taken (1), the prediction
of it being taken remains. If it
results that the branch was not
taken, the future prediction is
modified to be not taken (0).
 Since that prediction is
relatively discrete and jumps quickly
from taken to not taken, a two-bit
system can then be used to show
strong predictions and weak ones.

 With two bits, one can discern
from the prediction being “strongly
taken” (11) to “strongly not taken”
(00). Both “weak” predictions are
more susceptible to switching of
prediction and reflect the fact that
recent predictions have been
incorrect.

 Above is the model of a Gshare
branch predictor, which uses previous
global history and the Branch PC
exclusive-OR’ed together to create
the index at which our prediction is
placed.
 In the process of my research,
I was actually able to model a simple
Gshare branch predictor using Intel’s
PIN tool, a dynamic instrumentation
tool which allows the user to work
directly with processing information.
 Intel’s PIN tool works by
inserting code during the running
time of a program to report running
analysis.
 Note: To see a print screen of
Pin Tool, look at Slide 18 of my
presentation!

Predication

To further reduce chances of
mispredicting branches during program
executions, it is beneficial to
employ predication.

To show how predication works,
example code is given:

 Code

 Branch Code

 Simple code can be transformed
into branch-style code as previously
done. In this code, then, we have
four basic blocks.
 Predication removes condition
dependence and causes all code to be
data-dependent, making it possible
for two possible outcomes to be
executed simultaneously.

Note that blocks
B and C represent
the two possibilities
that p1 is deemed
to be a true and
taken condition (B),
or not, (C).

The change can be summarized as
follows:

“Rather than having branches (taken
or not taken), the branch condition
is made into a predicate, deemed
either true or false... In
Predication, each instruction is
executed when a predicate is true.
Every instruction enters the
processing pipeline, but results are
suppressed if the predicate is found
to be false.”

 The benefit of predication is
that two outcomes can be calculated
at the same time, and depending on
whether that condition is deemed to
be taken or not, the proper
calculation is used and the other
scrapped.

Conclusion

 While Minjang’s project was
vastly more complicated than my
simple implementation of a Gshare
branch prediction using PIN, I
learned a vast amount of information.
 There is no groundbreaking
discovery that I can proudly show to
DREU as a representation of my time
spent in the lab, but I feel I’ve
gained so much insight I could not
possibly have collected any other
way.
 Next semester, I’ll be taking
more computer architecture classes to
fulfill some technical electives for
my major. I can assure you that I
never would have even thought of
signing up for such a class without
this experience.
 I thank Hyesoon Kim for her
patience with me, her dedication to
helping me understand, and her
enthusiasm.
 This summer was unforgettable
in so many ways. Before this summer,
I did not anticipate going to
graduate school, but now, it is
definitely my plan of action.
 Thank you DREU!

Sources:

J.R. Allen et al., ‘‘Conversion of
Control Dependence to Data
Dependence,’’ Proc. 10th Ann. Symp.
Principles of Programming Languages
(POPL 83), ACM Press, 1983, pp. 177-
189.

H. Kim et al., ‘‘Wish Branches:
Combining Conditional Branching and
Predication for Adaptive Predicated
Execution,’’ Proc. 38th Ann. IEEE/ACM
Int’l Symp. Microarchitecture (Micro
05), IEEE CS Press, 2005,
pp. 43-54.

H. Kim et al., ‘‘Diverge-Merge
Processor (DMP): Dynamic Predicated
Execution of Complex Control-Flow
Graphs Based on Frequently Executed
Paths,’’ Proc. 39th Ann. IEEE/ACM
Int’l Symp. Microarchitecture (Micro
06), IEEE CS Press, 2006,
pp. 53-64.

H. Kim et al., ‘‘Profile-Assisted
Compiler Support for Dynamic
Predication in Diverge-Merge
Processors,’’ to be published
in Proc. IEEE/ACM Int’l Symp. Code
Generation and Optimization (CGO 07),
IEEE CS Press, 2007.

S.A. Mahlke et al., ‘‘Characterizing
the Impact of Predicated Execution on
Branch Prediction,’’ Proc. 27th Ann.
Int’l Symp. Microarchitecture (Micro
94), IEEE Press, 1994, pp. 217-227.

