
Improving Query Processing on Imprecise Data Streams

Eugenia Gabrielova 1

Northwestern University
Evanston, IL

Julie Letchner 2

University of Washington
Seattle, WA

Magdalena Balazinska 3

University of Washington
Seattle, WA

1genia@u.northwestern.edu
{2letchner, 3magda}@cs.washington.edu

ABSTRACT
Many applications, such as monitored health care and theft
detection, depend on higher-level data inferred from low-
level location sensors such as RFID and GPS. This high level
data occurs in the form of imprecise, correlated sequences,
which are modeled by Markovian streams. Such data is too
difficult to manage with traditional databases.

Lahar is a system that warehouses and processes queries
on such streams, returning a set of query answers annotated
with probabilities. Some queries return many partial results,
which wastes computing resources. Processing streams and
queries in a reversed direction may result in fewer partial
matches.

In this paper, I present an application developed to reverse
Markovian streams and queries. This application also com-
pares the efficiency of processing a query on forward and
backward streams. Some properties of queries, such as a
rare element at the end of a query, may make backward pro-
cessing a more efficient choice. The ability to reverse and
process Markovian streams backward to process such queries
improves the efficiency of the Lahar system.

1. MOTIVATION
1.1 Motivating Scenario
Location sensing technology such as RFID and GPS pro-
duces a large amount of potentially very useful data. This
data could very useful for applications such as theft detec-
tion, monitored healthcare, and smart homes. However, it
is largely unmanageable with traditional databases because
of its imprecise nature.

Consider, for example, a house designed to conserve energy
and benefit the environment by tracking the behvaior of its
inhabitants and managing lighting, temperature, water, and
power accordingly. Each doorway will have an RFID bea-
con, and each member of the household would carry a card
indicating to track their location.

Suppose that friends Abbie and Jake live in such a house.
On a cold winter day, the house might select which rooms
to heat based on where its inhabitants spend most of their
time. Its energy management algorithm would benefit from
knowing that Abbie and Jake are enthusiastic students and
love to spend time reading and studying in their rooms and
the living room. It would also be useful to know how many
people access the guest room on a regular basis - if that
room or another room is rarely used, the house can allocate
resources accordingly.

This task is difficult because RFID sensors aren’t always
fully accurate, and because the activities of members of the
household are often correlated over the course of day. In
order to accomplish such complex energy management, the
house needs a way to accurately interpret the low-level data
from the RFID sensors in a useful manner.

1.2 Background
Markovian Streams
The output from location sensors such as RFID or GPS
appears in the form of ordered, imprecise, and correlated
streams of data. Markovian streams are a compact way
to store such data, and can be obtained from probabalistic
models. The data from these streams is very useful in the
scenario of the environmental smart home. Consider an ex-
ample of Abbie and Jake preparing for final exams - they
spend time studying in their rooms and in the living room,
and enjoy meals and snacks in the kitchen.

These streams contain a set of ordered timesteps. Each
timestep has a corresponding probability distribution of likely
values. In the case of the smart home, these values would
correspond to the likelihood of Abbie or Jake being in their
rooms before lunch, or in the kitchen for a meal or snack.



Another property of Markovian streams is that their timesteps
are correlated. The probability of being in a certain location
depends on earlier probabilities corresponding to that loca-
tion. A person is more likely to be in the kitchen at 1:01
PM if they are already there at 1 PM.

Processing Markovian Streams with Lahar
Lahar is a data warehousing system that was created to
store and analyze Markovian streams by processing real-time
event queries and returning a set of likely outcomes. For the
example of the ecological smart home, it might be useful to
query the RFID data for information about the behaviour
of members of the household.

How likely is it that Abbie studies in her bedroom for a few

hours and then goes downstairs to the kitchen for a snack?

How frequently is the guest room visited?

When does Jake take a break from watching movies in the

living room to eat a meal and check his laundry?

Lahar has the ability to process these and other challenging
queries, but the magnitude of the data it must analyze is im-
mense. The quantity of deterministic data in one Markovian
stream can be exponential. While it has been demonstrated
that reading a stream is fairly quick, processing queries is
much more time-consuming.

In some cases, indexes are available and can save time by
allowing access to the relevant parts of a Markovian stream.
However, it is not realistic to assume that useful indexing

will always exist. Any optimization that narrows the field
of possible results for a query, or enables Lahar to reach an
answer more quickly, improves the speed of the system.

Though some systems exist that query large amounts of un-
certain data, Lahar is especially useful for the data output
from location-sensing technology. Warehousing this data of-
fers potential for technological advancement in a number of
applications, including smart homes, theft detection, and
monitored healthcare.

1.3 Intended Contribution
The queries that Lahar analyzes can be described in terms of
predicates, such as ”before-10-am” and ”this-is-the-kitchen”.
If a predicate is rarely satisfiable in the data (suppose the
guest room is rarely occupied), then it has high selectivity.
The selectivity of a predicate is low if it is satisfied often in
the data.

In Lahar, an event query that starts with a set of low-
selectivity predicates may result in a number of partial query
matches. For example, if Abbie spends a lot of time study-
ing and Dmitrii spends a lot of time watching television in
the living room, queries that include those events will return
many possible results. If the end of the query contains any
number of high-selectivity predicates, many of those par-
tial matches will become dead ends. By satisfying more
highly selective predicates first, Lahar will require fewer cal-
culations to reach an answer. This means that Lahar will
generate fewer partial query results.

This improved efficiency can be achieved by processing the
stream in reverse, starting from the end of the stream and
the end of the query, and going backwards in time.

2. TECHNICAL CONTRIBUTION
Stream Reversal Tool
The goal of my research was to develop a standalone ap-
plication for reversing Markovian streams in Lahar. This
would require compatibility with streams of various types,
as well as a straight-forward experimentation method for
testing relative efficiency of backward and forward process-
ing.

2.1 Requirements
The purpose of the Stream Reversal Tool is to streamline the
Lahar user experience in terms of efficient query processing.
These are the initially defined goals

• Compatible with Lahar data formatting

• Takes as input a forward Markovian stream and pro-
duces the reversed stream

• Does not require user input beyond initiation with a
forward stream

2.2 Reversal Algorithm
Generating a backward stream does not require any query
information - only the original forward stream and its marginal
probabilities. For a stream with 3 timesteps, T0-Forward is



T2-Backward, and T2-Forward is T0-Backward. probabili-
ties. Next, a brief illustration of the reversal process, and
the algorithm used for implementation.

Reversing a Forward Stream
Input: Forward stream F

Let vector m = final marginal probability for each node [a,
b, c] from F

for each backward time step
for each node [a, b, c]
Let xm = p[node] from m

Let xforward = marginal probability from previous timestep
in forward stream
Let p = probability on this segment from forward stream
next = p * xforward / xm

2.3 Stream Reverser Overview

The most up-to-date version of the Stream Reverser can be
run from within Lahar, or it can be initiated with hardcoded
Markovian stream data. A tool to read in forward streams
from text files behaves inconsistently. Input processing with
Lahar’s BDB utility has been unsuccessful, so the Stream
Reverser is most useful when called from harcoded streams
or from within Lahar.

Query processing functionality in the Stream Reverser is ex-
tended from Lahar’s current method. Two primary adapta-
tions occurred to make reversal and efficiency measurement
possible. First, the stream generation method now takes
stream structures as an input. Second, the reverser calcu-
lates efficiency with a modified implementation of the Lahar
state calculator.

2.4 Recommended Next Steps
There are three primary improvements that could improve
the utility of the Stream Reverser Tool.

1. Lahar IO Interface: The effort to implement Lahar
IO compabitility into the Stream Reversal Tool was
not successful. This would be a useful feature as it
would enable the swift writing of streams to disk. To
accompany this feature, it may also be helpful to im-
plement an interface for creating Markovian streams,
which would then write them to disk via BDB or some
other database system in preparation for processing.

2. Recording Start Time Steps for Satisfied Queries:

Lahar is currently capable of storing the ending timesteps
for sequences that satisfy queries. Storing start time
would enhance the quality of information available for
stream reversal.

3. Query Direction Optimizer: Properties including
frequency and connectedness of elements in a stream
make reverse processing more fitting than forward pro-
cessing. Harnessing these properties into a utility that
decides for the user whether or not backward or for-
ward processing is more efficient would eliminate the
need to process queries both forward and backward.

3. EVALUATION
3.1 Experiment Set Up
The Reversal Experiment Layer is a package that wraps
around the stream reverser application to faciliate exper-
iments on query processing efficiency. It also implements
I/O for stream reversal. At this time, input from hardcoded
stream data is functional. In the future, this layer of the
application will be able to read streams from disk after they
are processed by Lahar. However, at this time is dependent
on Lahar’s direct output.

One of the primary challenges of writing this utility was in-
stantiation of Reg Operator elements from the Lahar system
code. A workaround is implemented in the code comments
but a fix would be a useful improvement for longterm use.

3.2 Results
Backward processing proved most effective on streams with
one or more rare element. The control case - a well-connected
stream, did not yield improved efficiency with backward pro-
cessing. In many cases, backward processing improved ef-
ficiency by a factor of 1.3 to 2. In the following graphics,
which represent the most notable performance, backward
processing required a consistent quantity of operations while
forward processing lost efficiency with increased query com-
plexity and time.



All test cases have been processed on streams with three pos-
sible stream coordinates (A, B, C, for example). It may be
useful to consider data with more members in future appli-
cations. Similar results, on a scale of 1.2 to 1.5 efficiency im-
provement, occurred with much longer streams (with length
800 - 122 timesteps). Control cases with zero or few dis-
connected stream elements did not display any significant
difference between forward and backward processing.

4. CONCLUSIONS
The ultimate goal of this project was to improve Lahar’s
speed, and to optimize the manner in which it handles di-
verse event queries. The Stream Reversal Tool will improve
the efficiency of Lahar in cases where reverse processing is
beneficial. Additionally, the application improves the Lahar
user experience by performing calculations necessary for re-
versing streams, which are often tedious beyond a very short
stream length.

While reverse stream processing is not applicable in all cases,
experimentation with the stream reversal tool demonstrates
that when reversal is applicable, increase in efficiency is sig-
nificant. In a number of cases, the quantity of calculations
required to find the probability of satisfying a query de-
creases by a factor of 1.5 to 2 when processed in reverse.

The Stream Reversal Tool is in a stable state, and success-
fuly achieves its objective of reversing Markovian streams.
It is practical for real-life NFA queries, and has potential for
audio stream processing.

5. ACKNOWLEDGMENTS
I would like to thank Julie Letchner and Dr. Magdalena Bal-
azinska for their guidance and mentorship in the Database
group at the University of Washington this summer. Thanks

to the DREU program providing the opportunity for this re-
search experience.

6. REFERENCES
[1] J. Letchner, C. Ré, M. Balazinska, and M. Philipose.

LaharOLAP Demonstration: Warehousing Markovian
Streams. In 35th International Conference on Very

Large Databases, 2009.

[2] J. Letchner, C. Ré, M. Balazinska, and M. Philipose.
Access methods for markovian streams. In 25th

International Conference on Data Engineering, 2009.

[3] J. Letchner, C. Ré, M. Balazinska, and M. Philipose.
LaharOLAP: Supporting OLAP queries on Markovian
streams. Technical Report #CSE-09-03-03, University
of Washington, March 2009.


