
Gathering Data for Contemporary Canonical Software Courses

Ritika Jhangiani
Department of Computer Science

College of St. Scholastica
1200 Kenwood Ave., Duluth, MN 55811

rjhangia@css.edu

Elizabeth Ellis
Department of Computer Science

Hiram College
11694 Hayden St., Hiram, OH 44234

ellisea@my.hiram.edu

Advisor: Yuanfang Cai
Department of Computer Science

Drexel University
3141 Chestnut St., Philadelphia, PA 19104

yfcai@cs.drexel.edu

Abstract—In an effort to offer contemporary canonical
software courses in web browser and web server develop-
ment, it is necessary to understand the key technologies
behind designing a web server and a web browser and
how a web server and a web browser interact with each
other. To do this, we studied Apache HTTPD and Mozilla
Firefox to understand their architecture structure and
how they survive over years, including their development
history and developer interaction. This paper presents
our initial work in organizing knowledge to present in
the newly offered courses.

I. INTRODUCTION

Computer science curricula usually include the
teaching of canonical software systems, such as
operating systems and compilers, because these
systems embody the concepts and technologies
that constitute an important part of the knowledge
base of computer science education. The prolifer-
ation of the Internet has changed the way people

interact with computers. Hardly a day goes by
without using a web browser, checking email, or
instant messaging. The concepts and technologies
behind these new canonical systems are important
computer science knowledge. In particular, under-
standing how web browsers and web servers func-
tion and interact is fundamental to Internet-based
application development. It becomes important for
students to be exposed to the formal study of these
modern canonical systems.

Our task was to mine the source code, developer
mailing lists, and SVN/CVS commit log infor-
mation for both the Apache HTTPD and Mozilla
Firefox projects. To do this, we had to reverse-
engineer the software.

The difficulty in doing these things is that these
projects haven’t been studied in such a close prox-
imity before, and those that did studied them at a
high level which would not be conducive to the



knowledge needed to offer courses in web browser
and web server development. Another reason that
these projects were hard to study is that they are
very large, which makes most common reverse-
engineering tools impossible to use as they cannot
handle so many source files at once.

This paper explores our preliminary work in or-
ganizing the data necessary to study these projects
closely. We have gathered pertinent information
from the developer mailing list of the Apache
HTTPD and the CVS commit information for
Mozilla Firefox into a database using scripts writ-
ten in Ruby. Finally, we are currently working
on reverse-engineering the Apache source code
using the doxygen open-source tool to gain depen-
dency information to use in creating dependency
structure matrices (DSMs) in order to understand
Apache’s architecture.

II. RELATED WORK

Many studies have been conducted previously
on the Apache HTTPD server and Mozilla Firefox.
For instance, Dragoi and Preston have studied the
concrete architecture of the Apache server and
found it to consist of the main core and many
individual modules [1]. Campos et. al studied the
architecture of Mozilla Firefox and found it to be
a match for a layered architectural model, with the
main components being independent as long as the
component conforms to a predefined interface [2].

However, the authors do not go into the tech-
nical details about the interaction of web servers
and web browsers or into the low-level details of
the architecture and software design.

III. GATHERING DATA

The goal of the project we were a part of was
to develop new courses to offer students in the
2011-2012 school year. These courses would focus
on the design and interaction of web servers and
web browsers. In order to offer such courses, an
intricate and in-depth level of knowledge on these
types of software is necessary.

Our task was to gather that knowledge from two
popular open source software projects–the Apache
HTTPD web server and the Mozilla Firefox web

browser. These projects have been successful and
have survived for many years, making them feasi-
ble for study as their source code and development
history is made public.

A. Source Code Repositories

To understand the development history of these
software projects, we had to mine the source
code repositories. This is necessary to understand
how the structures and features evolve over time,
where and when refactoring happened, and which
and how many other parts of the system changed
accordingly.

To do this, we downloaded the Mozilla Firefox
CVS commit log. We extracted pertinent informa-
tion such as the author of the commit, the date,
the time, the revision number, the bug number
(if applicable), and comments using Ruby scripts.
We organized this information and stored it in a
MySQL database.

B. Developer Mailing Lists

It is also crucial to mine the developer mailing
lists for both projects. Knowledge gained from de-
veloper communications includes how the number
of developers change over time, how many sub-
communities there are, and how the communica-
tions correspond to modules.

To do this, we downloaded the Apache HTTPD
developer mailing list from their web site using
wget on a Linux server. We extracted pertinent
information from each e-mail such as the sender,
the date, the time, the subject, and the original e-
mail this e-mail is responding to (if applicable)
using Ruby scripts. Using this information, we
derived communications between two developers
as people. This will be used in the analysis of the
information. We organized this information and
stored it in a MySQL database.

C. Reverse-Engineering the Source Code

This step was met with some difficulty. It is
probably the most important piece of the puzzle in
understanding the architecture and design of these
two systems.



Many tools (such as REportal, Bunch, and Lat-
tix) would not work for us in extracting the main
architectural model of these two systems [3][4].
Some common reasons that existing tools prove
unsuccessful in our research are: the tool doesn’t
have the language compatability with C/C++ that
Apache and Firefox are written in, the large size
of the source code of these projects, and that the
tools were still under development.

However, we were able to successfully gain
information from the doxygen documentation tool
for the Apache HTTPD server version 2.2 in
the form of XML and HTML output containing
dependency call graph information. By writing
XSLT stylesheets, we extracted relevant depen-
dency information between modules, functions,
and classes. This will be used to analyze the
interaction of the modules, functions, and classes
to gain an understanding of the lower-level archi-
tecture of the Apache HTTPD web server.

IV. FUTURE WORK

Although we have made excellent progress, we
have not yet compiled data for vital parts of both
projects. We hope to extract the Apache SVN
commit log information using a Perl script written
by a graduate student at Drexel University. In the
past we have been unable to download the Mozilla
Firefox developer mailing list as the permissions
were forbidden, but we hope to gain the data from
the mailing list in the future using Ruby scripts.

We also hope to reconfigure the doxygen files
using XSLT to get specific dependency informa-
tion that we will use as input to the uml2acn and
Minos tools to generate augmented constraint net-
works (ACNs) and dependency structure matrices
(DSMs) [5].

By doing this, we will understand the lower-
level architecture of the two systems, making it
possible to develop a teaching tool to offer courses
in web server and web browser development to
incoming students.

V. ACKNOWLEDGEMENTS

We would like to thank Drexel University’s
Software Engineering Research Group and the

CRA-W for their help and support on this project.

REFERENCES

[1] O. A. Dragoi and J. E. Preston, “The
concrete architecture of the apache web
server,” http://www.cs.ucsb.edu/ tve/cs290i-
sp01/papers/Concrete Apache Arch.htm, Feb. 1999.

[2] A. C. et. al, “Conceptual architecture of firefox,”
http://web.uvic.ca/ hitchner/assign1.pdf, 2007.

[3] S. Mancoridis, T. Souder, Y.-F. Chen, E. Gansner, and
J. Korn, “Reportal: a web-based portal site for reverse
engineering,” in Reverse Engineering, 2001. Proceed-
ings. Eighth Working Conference on, 2001, pp. 221–
230.

[4] S. Mancoridis, B. Mitchell, Y. Chen, and E. Gansner,
“Bunch: A clustering tool for the recovery and mainte-
nance of software system structures,” Software Mainte-
nance, IEEE International Conference on, vol. 0, p. 50,
1999.

[5] S. Huynh, Y. Cai, and W. Shen, “Automatic transfor-
mation of uml models into analytical decision models,”
Drexel University, Tech. Rep. DU-CS-08-01, Jan. 2008,
https://www.cs.drexel.edu/files/ts467/DU-CS-08-01.pdf.


