Background

» Internet houses diverse applications (i.e., banking, networking, etc.), commonly implemented as web services

Fault-Based Combinatorial Testing of Web Services {

Bellanov Apilli Lydia Richardson Cory Alexander Dr. Kera Bell-Watkins, Advisor
bsapilli@ncsu.edu Ir0O0018@georgiasouthern.edu crayboy/711l@yahoo.com kzbell@georgiasouthern.edu

>We propose fault-based combinatorial testing and compare its fault-detection capability to current web service testing techniques. ~-Create problem by injecting fault into web

Problem
»Web services can be very complex in structure
» Difficulty in quality assurance
Proposed Solution:
» Knowledge-based web service testing
» Using known information in strategic ways to test software

-~
Cd

i..,,..w.;/ | WebApp2 | service

outputiisg ~Falsify conditional statement in source
code, creating a faulty web service
~Generate test inputs that will be executed by

\\A i the faulty code using combinatorial algorithm

inputMsg [WebApp3]

Ssndu;
3sandino

[WebAppl]

Web SerVi ces & Ap p [Cati ons Client accessing with a web service

S
| InputJ —> Web — OutputJ

Application
& L

Web Application
Example

»Web services built on SOAP (Simple Object Access Protocol)
»SOAP is communication protocol that allows transfer of data in
XML over the Internet
»SOAP allows different applications on different operating
systems with different languages to communicate
»Inputs & outputs of each application w/in a web service are
wrapped through the SOAP protocol into input and output
messages

. . . example
»Web services defined as server component in client-server

relationship Anticipated Contributions
» Client-server relationship could be described using web
based mail services (ex. Yahoo)

» Client(user) communicates with server(Yahoo)
»\Web application is accessed via web browser over network

>Web services can grow & be very complex, making it difficult to assure quality
>Web service testing is required
~Combinatorial testing techniques proven to be efficient in testing software

>Combining fault-based & combinatorial testing techniques, assessing & evaluating web
J>Common|y implemented in languages such as HTML & services may be better
ava

» Software components of web services Referen ces
» Receive input from client & produce output

1] M. Gudgin, M. Hadley, N. Mendelsohn, J. Moreau, H. Nielsen, A. Karmarkar, and Y. Lafon. Soap
Web version 1.2. http://www.w3.org/TR/soapl2-partl/, 2007.
Rk J - [Application} T[S J 2] D. Kuhn, D. Wallace, and A. G. Jr. Software fault interactions and implications for software testing.
J ! IEEE Transactions on Software Engineering, 30:418-421, 2004.
[3] C. Mao. Performing combinatorial testing on web service-based software. In IEEE International
Conference on Computer Science and Software Engineering, pages 755—-758, Nanchang, China,
l Web l 2008. IEEE Computer Society.
Sarvice 4] J. Offutt and W. Xu. Generating test cases for web services using data perturbation. SIGSOFT
Input Output Softw. Eng NOteS 29(5) 1—- 10 2004.
‘Message‘ ‘Message‘ 5] V. Pretre, F. Bouquet, and C. Lang. Automating uml models merge for web services testing. In

IIWAS °08: Proceedings of the 10th International Conference on Information Integration and Web-

Input & Output Messages Example based Applications & Services, pages 55-62, New York, NY, USA, 2008. ACM.

Web Service Emulation: 1Trust [6] N. C. S. U. RealSearch Research Group. itrust: Role-based healthcare v7.0.1n. http:

Reguestar

192 168 20

Testing Framework

-

» iTrust is a medical application that allows patients to keep up with their
medical history and records 25066, 2003.
» Through SOAP, WSDL, & UDDI specifications, iTrust is wrapped

//agile.csc.ncsu.edu/iTrust/wiki/doku.php, 2008.
[7] O. U. specification TC. Uddi version 3.0.2. http://uddi.org/pubs/uddi_v3.htm, 2005.
[8] W. Vogels. Web services are not distributed objects. Web services are not distributed objects,

-) = »Enables iTrust to emulate a web service
= "Uﬁ\ > Testing framework is a network where we emulate the Internet
L%\ 192.168.5.5 »In center hub, Traffic machines generate random network traffic
»Requester is client that will be accessing iTrust

» Monitor observes & collects information on traffic coming to and from
Requester

