
1

Fault-Based Combinatorial Testing of Web Services
Bellanov Apilli1, Lydia Richardson2, and Cory Alexander2

1Department of Computer Science, North Carolina State University, USA
2Department of Information Technology, Georgia Southern University, USA

bsapilli@ncsu.edu, {lr00018, calexan3}@georgiasouthern.edu

Abstract—The Internet houses diverse applications (i.e., bank-
ing, networking, etc.), commonly implemented as web services.
Web services are flexible but can become complex, making it diffi-
cult to assure their quality. We propose fault-based combinatorial
testing and compare its fault-detection capability to existing web
service testing techniques.

I. I NTRODUCTION

The Internet houses diverse applications, ranging from on-
line auctioning, banking, networking, to many other appli-
cations. These applications contain multiple software com-
ponents that interact with one another. This interaction is
an example of a web service, where the components send
and receive messages to or from other components. Having
multiple components allows web services to be flexible as
opposed to having one large application. Flexibility comes
at the cost of complexity. Web services are constantly being
modified. For instance, updating current components or adding
new ones. These changes can bring an unprecedented level
of complexity, making it difficult to ensure certain levels of
quality. One solution to this problem is to test web services
as these changes are being introduced. There currently exist
intelligent techniques to test web services but such techniques
may be in their infancy [2], [3], [5], [4]. We propose a
fault-based combinatorial testing approach, where we combine
fault-based and combinatorial testing techniques. We purpose-
fully introduce combinatorial faults to a web service, and
invoke the tests on the web service. We then determine if the
tests exposed the fault that we introduced. This helps fortify
web services by assuring that certain faults cannot exist within
them.

II. W EB SERVICES& A PPLICATIONS

Web services are defined as being the server component
in a client-server relationship where exchanged messages are
written in XML [8]. A client-server relationship could be
described using a web based mail service such as Yahoo.
For instance, a user, the client, communicates with Yahoo,
the server. Web applications are applications that are accessed
via a web browser over a network. They receive input from
a client and produce output. Multiple web applications are
integrated in a web service, allowing web applications from
different sources to interact on a network. For instance, an
application executing on a Linux machine can interact with an
application executing on a Windows machine, allowing web
services to be portable. Communication between applications

is best defined by aSender, the server, andReceiver, the
client, relationship.

A. Defacto Standards of Web Services

Web services are built onSOAP (Simple Object Access
Protocol) [1].SOAP is a communication protocol that allows
the transfer of data inXML over the Internet, enabling different
applications on different operating systems with different
languages to communicate with each other [1]. The inputs
and outputs of each application within a web service are
wrapped through theSOAP protocol into input and output
messages, illustrated in Figure 1. These messages are in a
format reconizable by other web services.

Fig. 1. Input & Output Messages

Clients for web services are specified in aWSDL (Web
Service Description Language) file. This file defines the nec-
essary operands required for communication with another web
service. Tied withWSDL is UDDI (Universal Description Dis-
covery and Integration).UDDI specifications store information
about web services, such as location and requirements, in
a format any web service can recognize, enabling them to
interact [7].

Fig. 2. Client accessing with a web service.

Figure 2 illustrates a user accessing a web service. Input and
output messages are denoted asinputMsg andOutputMsg,



respectively. All that is visible to the user is their provided
input and the output they receive from the web service. The
number of components interacting within a web service is
unknown to the user and may also be unknown to testers.
It is difficult to assure the quality of a web service based on
simple inputs and outputs. Thus intelligent testing techniques
are required.

B. Existing Testing Techniques

Exhaustive testing suggests testing for every possible com-
bination of inputs [2]. It may be difficult, even impossible,
or too costly to test for every possible input. For instance,an
input parameter defined as a person’s first name. Unless a set
containing every possible configuration of characters exists,
it is impossible to test for every combination associated with
this input. Considering the complexity in web services, an
exhaustive approach may be infeasible. A feasible approach
that is in its infancy with web services is combinatorial
testing. In this approach, test inputs are generated considering
interactions between input parameters [3]. This mechanism
minimizes the number of tests by focusing on, for example,
2-way interactions. As opposed to the exhaustive approach of
testing every possible combination, all 2-way combinations are
tested. Combinatorial testing minimizes the number of tests,
but may not be effective on systems with few inputs.

A validation framework,iTac-Qos (iTac Tests and Cer-
tifies Quality of Services), has proved to be an effective
technique to testing web services [5]. This tool requires a
model of the web services in order to generate tests. It utilizes
a UDDI server, where web services are registered, deployed,
and evaluated [5]. Although this tool proved to be effective, it
is heavily depenedent on models of web services, which may
not always be available.

Fault-based testing techniques have been applied as means
of testing web services. In the data pertubation technique,
messages are modified by predefined rules [4]. This technique
alters request messages and sends the modified requests as
tests to determine correct behavior. It requires access to
existing message data andWSDL file information prior to per-
tubation. This technique helps fortify web services, assuring
that certain faults cannot exist, but it is limited to known faults.
Fault-based testing includes testing for robustness, where a
white-box testing situation is assumed and error-recoverycode
coverage is emphasized. Faults are injected directly into source
code, paying attention to the altered pieces of code. The error-
recovery code coverage is measured when faulty source code
is executed. Although this technique may help reduce crashes
in a service, it is limited to white-box cases.

III. W EB SERVICE EMULATION : ITRUST

iTrust is a medical application that provides patients with
a means to keep up with their medical history and records
[6]. It handles very sensitive information that could physically
affect the lives of its users which may include, but not limited
to the following: allergies, overdose, and underdose. Therefore,
the quality of this application needs to be ensured before
releasing it to the public. Through theSOAP, WSDL, andUDDI

specifications, we wrap iTrust, enabling it to emulate a web
service.

Fig. 3. Testing Framework

Our testing framework (Figure 3) is a network, where
we emulate the Internet. In the center hub, theTraffic
machines generate random network traffic, mimicking the
Internet. TheRequester is the client that will be accessing
iTrust. TheMonitor observes and collects information on
the traffic coming to and from theRequester. TheiTrust
machine is the location whereiTrust is deployed as a web
service.

IV. FAULT-BASED COMBINATORIAL TESTING

Our approach combines both fault-based and combinatorial
testing techniques, focusing on known fault types specific to
web services, not the applications that they integrate. The
fault types in this experiment includeVersion Mismatch,
Sender, andReceiver faults [1]. They are as follows:

• VersionMismatch - The faulting node found an invalid
element information item instead of the expected Envelop
element information item. The namespace, local name
or both did not match the Envelope element information
item required by [the WC307] recommendation [1].

• Receiver - The message could not be processed for
reasons attributable to the processing of the message
rather than to the contents of the message itself. For
example, processing could include communicating with
an upstream SOAP node, which did not respond. The
message could succeed if resent at a later point in time
[1].

• Sender - The message was incorrectly formed or did
not contain the appropriate information in order to suc-
ceed. For example, the message could lack the proper
authentication or payment information. It is generally an
indication that the message is not to be resent without
change [1].

We first inject a fault into the web service. We accomplish this
by satisfying one of the conditions required for a specific fault
type. For instance, for aVersion Mismatch fault, either
the NameSpace or LocalName is invalid. Thus we would
purposefully alter these values, creating a faulty web service.
Test cases are generated by a combinatorial algorithm, where
t-way interactions are stressed. A value oft = 2, a 2-way
interaction, implies that every combination of 2 values will

2



be covered. For example, in aVersion Mismatch fault,
an invalid Namespace and LocalName make up one2-
way interaction, whereas a validNamespace and an invalid
LocalName make up another2-way interaction. Thus most
types of faults can be recreated by different comibinationsof
invalid conditions. In each test case, all2-way interactions are
covered, although there may be constraints. For instance, for
a Version Mismatch fault to exist, a message has to be
sent or received. ThusSender andReceiver faults cannot
exist. Outside constraints, allt-way interactions are covered,
and depending on the combination of invalid values generated,
multiple faults may be introduced to the web service.

After faults are introduced to a web service, test cases are
invoked on it. The test cases involve simply using the appli-
cations integrated in the web service. For instance,iTrust
requires a user to login in order to access their health informa-
tion. An example test case could be inputting invalid login in-
formation, whereas another case could involve inputting valid
information. A testing oracle, containing expected outputs for
specific inputs, is utilized. After a fault is introduced to the web
service, a test case from the oracle is invoked on it. The output
produced is compared to the expected value in the oracle. If
the responses differ, the fault is exposed. If the web service
detected an introduced fault successfully, it means that fault
cannot exist in the web service.

V. A NTICIPATED CONTRIBUTIONS

Web services can grow and be very complex throughout
their lifetime, making it difficult to assure their quality.Quality
may be very important, depending on the web service. For
instance,iTrust, a hospital management system, handles
very sensitive information that could affect the lives of its
users. Quality is must. Thus web service testing is required.
Combinatorial testing techniques have proven to be efficient
in testing software, but as far as web services, they may be in
their infancy. By combining both fault-based and combinato-
rial testing techniques, and by introducing diverse faultsinto a
web service and monitoring for correct behavior, we are more
confident about the quality of the web service. With proper
testing, we believe this fault-based combinatorial testing of
web services may be able to better assess and evaluate web
services.

REFERENCES

[1] M. Gudgin, M. Hadley, N. Mendelsohn, J. Moreau, H. Nielsen, A. Kar-
markar, and Y. Lafon. Soap version 1.2. http://www.w3.org/TR/
soap12-part1/, 2007.

[2] D. Kuhn, D. Wallace, and A. G. Jr. Software fault interactions and impli-
cations for software testing.IEEE Transactions on Software Engineering,
30:418–421, 2004.

[3] C. Mao. Performing combinatorial testing on web service-based software.
In IEEE International Conference on Computer Science and Software
Engineering, pages 755–758, Nanchang, China, 2008. IEEE Computer
Society.

[4] J. Offutt and W. Xu. Generating test cases for web services using data
perturbation.SIGSOFT Softw. Eng. Notes, 29(5):1–10, 2004.

[5] V. Pretre, F. Bouquet, and C. Lang. Automating uml models merge for
web services testing. IniiWAS ’08: Proceedings of the 10th International
Conference on Information Integration and Web-based Applications &
Services, pages 55–62, New York, NY, USA, 2008. ACM.

[6] N. C. S. U. RealSearch Research Group. itrust: Role-based healthcare
v7.0.1n. http://agile.csc.ncsu.edu/iTrust/wiki/doku.php, 2008.

[7] O. U. specification TC. Uddi version 3.0.2. http://uddi.org/pubs/uddiv3.
htm, 2005.

[8] W. Vogels. Web services are not distributed objects.Web services are
not distributed objects, 7:59–66, 2003.

3


