Fault-Based Combinatorial Testing of Web Service

Bellanov Apilli*, Lydia Richardsof, and Cory Alexandér

!Department of Computer Science, North Carolina State University, USA
2Department of Information Technology, Georgia Southern UniversisA
bsapi | I'i @csu. edu, {Ir00018, cal exan3}@eor gi asouthern. edu

Abstract—The Internet houses diverse applications (i.e., bank- is best defined by &ender , the server, antRecei ver, the
ing, networking, etc.), commonly implemented as web services. client, relationship.
Web services are flexible but can become complex, making it diffi-

cult to assure their quality. We propose fault-based combinatorial A Defacto Sandards of Web Services
testing and compare its fault-detection capability to existing web
service testing techniques. Web services are built oi3OAP (Simple Object Access

Protocol) [1]. SOAP is a communication protocol that allows
the transfer of data iXM_ over the Internet, enabling different
[. INTRODUCTION applications on different operating systems with différen

The Internet houses diverse applications, ranging from dghguages to communicate with each other [1]. The inputs
line auctioning, banking, networking, to many other appli@nd outputs of each application Wl_thln a web service are
cations. These applications contain multiple software -cofffapPped through théSOAP protocol into input and output
ponents that interact with one another. This interaction f€ssages, illustrated in Figure 1. These messages are in a
an example of a web service, where the components sdREMat reconizable by other web services.
and receive messages to or from other components. Having

multiple components allows web services to be flexible as — —
| |

opposed to having one large application. Flexibility comes

at the cost of complexity. Web services are constantly being

modified. For instance, updating current components omaddi
new ones. These changes can bring an unprecedented level } We_b }
of complexity, making it difficult to ensure certain level$ o nput REFUIEE e
quality. One solution to this problem is to test web services Message Message

as these changes are being introduced. There currently exis

intelligent techniques to test web services but such teghes Fig- 1. Input & Output Messages
may be in their infancy [2], [3], [5], [4]- We propose a
fault-based combinatorial testing approach, where we doenb
fault-based and combinatorial testing techniques. Weqaep
fully introduce combinatorial faults to a web service, an
invoke the tests on the web service. We then determine if t
tests exposed the fault that we introduced. This helpsfyorti
web services by assuring that certain faults cannot exisiinvi
them.

Clients for web services are specified inV&DL (Web
Service Description Language) file. This file defines the nec-
gssary operands required for communication with anothér we
ﬁ%rvice. Tied with\BDL is UDDI (Universal Description Dis-
covery and Integration)JDDI specifications store information
about web services, such as location and requirements, in
a format any web service can recognize, enabling them to
interact [7].

II. WEB SERVICES& A PPLICATIONS

Web services are defined as being the server component inv-m-/’
in a client-server relationship where exchanged messages a

written in XML [8]. A client-server relationship could be
described using a web based mail service such as Yahoo.

For instance, a user, the client, communicates with Yahoo, D
the server. Web applications are applications that aresaede \
via a web browser over a network. They receive input from in%
a client and produce output. Multiple web applications are

integrated in a web service, allowing web applications from
different sources to interact on a network. For instance, Q. 2. client accessing with a web service.
application executing on a Linux machine can interact with a

application executing on a Windows machine, allowing web Figure 2 illustrates a user accessing a web service. Ingut an
services to be portable. Communication between applicaticoutput messages are denoted aput Msg andCQut put Msg,

outputMsg

3spanduy|
Ssandino

respectively. All that is visible to the user is their prostl specifications, we wrap iTrust, enabling it to emulate a web
input and the output they receive from the web service. Tiservice.

number of components interacting within a web service is

unknown to the user and may also be unknown to testers. monitor

It is difficult to assure the quality of a web service based on
simple inputs and outputs. Thus intelligent testing teghes

. iTrust
are required.
Requester| Hub Hub Hub D
B. Existing Testing Techniques i] - "F_" i%
Exhaustive testing suggests testing for every possible com s E E 1921683
bination of inputs [2]. It may be difficult, even impossible, 1921682 = — N
or too costly to test for every possible input. For instarate, Traffic Traffic

192.168.4X

input parameter defined as a person’s first name. Unless a set
pqntgmmg every possible conﬂgurathn qf charactgrstexls_,ﬁg_ 3. Testing Framework
it is impossible to test for every combination associateth wi

this input. Considering the complexity in web services, an . . .

exhaustive approach may be infeasible. A feasible approachou:nulasttmgt]hfralr:te\xlorl(I(rlfl?rl: re 3r)1t ":‘ r? S etworlf<,f iwhere
that is in its infancy with web services is combinatoriame iinuae ner i er ﬁd m netvferk etr ﬁliJ ,mimi kinC h
testing. In this approach, test inputs are generated cersgl achines generate rando ewo ame, cking the

interactions between input parameters [3]. This mechaniélpcﬁemet‘ TheRequest er is the client that will be accessing

minimizes the number of tests by focusing on, for examplt ertl:jftfié:r:r;?n,\i/r?mt(; Z; dof? iazféeanje?[”sfts_rﬁ:rg aljg] on
2-way interactions. As opposed to the exhaustive approch T gloc . que .
machine is the location wheielr ust is deployed as a web

testing every possible combination, all 2-way combinagtiare .
tested. Combinatorial testing minimizes the number ofstes?erv'ce'
but may not be effective on systems with few inputs.
A validation framework,i Tac- Qos (iTac Tests and Cer- IV. FAULT-BASED COMBINATORIAL TESTING
tifies Quality of Services), has proved to be an effective Our approach combines both fault-based and combinatorial
technique to testing web services [5]. This tool requirestasting techniques, focusing on known fault types speaific t
model of the web services in order to generate tests. Izasli web services, not the applications that they integrate. The
a UDDI server, where web services are registered, deployéallt types in this experiment includéer si on M smat ch,
and evaluated [5]. Although this tool proved to be effective Sender, andRecei ver faults [1]. They are as follows:
is heavily depenedent on models of web services, which may, versionMismatch - The faulting node found an invalid
not always be available. element information item instead of the expected Envelop
Fault-based testing techniques have been applied as means glement information item. The namespace, local name
of testing web services. In the data pertubation technique, or poth did not match the Envelope element information
messages are modified by predefined rules [4]. This technique jtem required by [the WC307] recommendation [1].
alters request messages and sends the modified requests @sreceiver - The message could not be processed for
tests to determine correct behavior. It requires access t0 y(easons attributable to the processing of the message

existing message data al&DL file information prior to per- rather than to the contents of the message itself. For
tubation. This technique helps fortify web services, asgur example, processing could include communicating with
that certain faults cannot exist, but it is limited to knovamlts. an upstream SOAP node, which did not respond. The
Fault-based testing includes testing for robustness, evher message could succeed if resent at a later point in time
white-box testing situation is assumed and error-recovede [1].

coverage is emphasized. Faults are injected directly milec® , sender - The message was incorrectly formed or did
code, paying attention to the altered pieces of code. The-err not contain the appropriate information in order to suc-
recovery code coverage is measured when faulty source code ceed. For example, the message could lack the proper
is executed. Although this technique may help reduce cgashe aythentication or payment information. It is generally an

in a service, it is limited to white-box cases. indication that the message is not to be resent without
change [1].
IIl. WEB SERVICE EMULATION 1 ITRUST We first inject a fault into the web service. We accomplisis thi

i Trust is a medical application that provides patients withy satisfying one of the conditions required for a specifidtfa
a means to keep up with their medical history and recortigpe. For instance, for &er si on M smat ch fault, either
[6]. It handles very sensitive information that could plogdly the NameSpace or Local Nane is invalid. Thus we would
affect the lives of its users which may include, but not ledit purposefully alter these values, creating a faulty webiserv
to the following: allergies, overdose, and underdose. &foee, Test cases are generated by a combinatorial algorithm,ewher
the quality of this application needs to be ensured before way interactions are stressed. A value tof 2, a 2-way
releasing it to the public. Through tI8OAP, WEDL, andUDDI interaction, implies that every combination of 2 values! wil

be covered. For example, in\éer si on M snmat ch fault, [7] O. U. specification TC. Uddi version 3.0.2. http://uduig/pubs/uddiv3.
an invalid Namespace and Local Nane make up one2- htm, 2005. _ o . .
., [8] W. Vogels. Web services are not distributed objectéb services are
way interaction, whereas a valilanmespace and an invalid not distributed objects, 7:59—66, 2003.
Local Narme make up anotheB-way interaction. Thus most
types of faults can be recreated by different comibinatioihs
invalid conditions. In each test case, 2dlvay interactions are
covered, although there may be constraints. For instaoce, f
a Versi on M smat ch fault to exist, a message has to be
sent or received. ThuSender andRecei ver faults cannot
exist. Outside constraints, alway interactions are covered,
and depending on the combination of invalid values genéyate
multiple faults may be introduced to the web service.
After faults are introduced to a web service, test cases are
invoked on it. The test cases involve simply using the appli-
cations integrated in the web service. For instanch, ust
requires a user to login in order to access their healthimder
tion. An example test case could be inputting invalid login i
formation, whereas another case could involve inputtirigdva
information. A testing oracle, containing expected owpfor
specific inputs, is utilized. After a fault is introduced hetweb
service, a test case from the oracle is invoked on it. Theututp
produced is compared to the expected value in the oracle. If
the responses differ, the fault is exposed. If the web servic
detected an introduced fault successfully, it means that fa
cannot exist in the web service.

V. ANTICIPATED CONTRIBUTIONS

Web services can grow and be very complex throughout
their lifetime, making it difficult to assure their qualitQuality
may be very important, depending on the web service. For
instance,i Trust, a hospital management system, handles
very sensitive information that could affect the lives of it
users. Quality is must. Thus web service testing is required
Combinatorial testing techniques have proven to be efficien
in testing software, but as far as web services, they may be in
their infancy. By combining both fault-based and combinato
rial testing techniques, and by introducing diverse fainits a
web service and monitoring for correct behavior, we are more
confident about the quality of the web service. With proper
testing, we believe this fault-based combinatorial testii
web services may be able to better assess and evaluate web
services.

REFERENCES

[1] M. Gudgin, M. Hadley, N. Mendelsohn, J. Moreau, H. Niglsé. Kar-
markar, and Y. Lafon. Soap version 1.2. http://www.w3.0Ry/T
soapl2-partl/, 2007.

[2] D. Kuhn, D. Wallace, and A. G. Jr. Software fault inteiaos and impli-
cations for software testingEEE Transactions on Software Engineering,
30:418-421, 2004.

[3] C. Mao. Performing combinatorial testing on web serviesdd software.
In |EEE International Conference on Computer Science and Software
Engineering, pages 755-758, Nanchang, China, 2008. IEEE Computer
Society.

[4] J. Offutt and W. Xu. Generating test cases for web sesvieging data
perturbation.S GSOFT Softw. Eng. Notes, 29(5):1-10, 2004.

[5] V. Pretre, F. Bouquet, and C. Lang. Automating uml models médogy
web services testing. [WWAS'08: Proceedings of the 10th International
Conference on Information Integration and Web-based Applications &
Services, pages 55-62, New York, NY, USA, 2008. ACM.

[6] N. C. S. U. RealSearch Research Group. itrust: Rolethdsalthcare
v7.0.1n. http://agile.csc.ncsu.edu/iTrust/wiki/dgkup, 2008.

