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Abstract

Many people all over the world suffer from disabilities that impair their ability to move 
their arms and hands. Losing the control of these appendages may cause the loss of the 
ability to use a mouse as a pointing device on a computer. The Camera Mouse software 
was designed with these people in mind. By using a USB web camera, a facial feature 
can be tracked to translate their facial movement to pointer movement. Developments to 
make the Camera Mouse easier to use are always being made. One way to make the 
Camera Mouse more usable is to study the movement ability of current users in order to 
determine which directions of movement, if any, are easier to make than others. Another 
was to enhance the Camera Mouse software for its users is a feature that would add blink 
detection to substitute mouse pointer clicks instead of the current dwell-time feature. 
 

Introduction 
 

 The Camera Mouse was developed as a non-intrusive, relatively inexpensive 
mouse alternative [1]. While a working version of the Camera Mouse is currently online 
and free to download, improvements are always being worked on to make navigating a 
computer screen easier for disabled Camera Mouse users.  
 One way to improve the Camera Mouse is to figure out how disabled users move. 
The importance of finding out which directions are easier for disabled user to move in is 
important for applications designed to be used in conjunction with the Camera Mouse.  
Basic movements can be classified as diagonal or straight, left, right, up or down, and 
short or long. By asking disabled users to make these movements and recording their path 
trajectories, these trajectories can be analyzed to determine which movements were easier 
to make. This can be done by comparing the path taken by the user to the shortest, 
straight-line path between each target. By finding the mean distance and the difference in 
path length of the actual path from the shortest, straight-line path, the accuracy of the 
actual path can be determined.  
 Another way to expand the capabilities of the Camera Mouse, making it easier for 
some users, is the addition of blink detection. This way, users can voluntarily control 
mouse clicks by blinking. Two ways of implementing this are discussed. One was is to 
use difference images to find the specific image made by blinks. The other is to use 
template images of the eyes, both open and closed, and search through the video images 
for these images.  
 

 
 



Related Work 
 

 Akram et al. discussed motion analysis of disabled Camera Mouse users. The test 
described in this paper is modeled roughly after the test in [2]. It is designed to test all the 
major directions and lengths of movement. While the test described in [2] is designed to 
test the user’s ability to dwell in a target for 3 seconds, this test was not designed to test 
dwell-time abilities. Also unlike the test by Akram et al, this test was not designed to test 
the user’s ability to guide the cursor to targets of differing sizes.    
  Blink detection has been discussed in [3]. The method used to locate the eyes is 
by using difference images. Then using a normalized correlation coefficient a template 
search is used to detect blinks. This successful detection of blinks was never incorporated 
into the Camera Mouse. In [3] the blink detection is designed to follow a sequence of 
steps: it first uses difference images to locate the eye, then tracks the eye and compares it 
to a templates of the open and closed eye to determine the extent of closure. A blink’s 
duration is then classified by the number of frames in a row where the eye is considered 
closed. This is not the way that the blink detection in this paper is attempted, but many of 
the same ideas are used.  
 

The Test 
 

 This 15-target motion analysis test was designed specifically to determine which 
directions of movement, if any, were easier for disabled users to travel in. All the targets 
were kept at the same size, and were activated in an order such that horizontal, vertical, 
and diagonal movements in differing lengths were required. Since only the movements 
and not the dwell-time ability were being tested, the dwell time setting on the Camera 
Mouse for mouse clicks was set to the fastest setting (less than .1 second dwell-time 
equals a mouse click). Also, to truly test only the motion, all the targets were set to be the 
same size. The test design can be viewed in Figure 1.  
 We had a total of three testing sessions with disabled Camera Mouse users. We 
also had two non-disabled users to compare results with. In each test run, a few added 
lines in the Camera Mouse code were used to record the screen coordinates of the mouse 
in one text document and the screen coordinates of each mouse click in a separate text 
document. With these two data sets, the coordinates could be plotted using Microsoft 
Excel to find the motion trajectory that each subject took.  
 We had six subjects in total, four with disabilities and two without. The subjects 
with disabilities spanned from 14 years old to mid-forties. Three of these subjects were 
students at the Campus School at Boston College who suffered from cerebral palsy. The 
fourth subject was a man, who has been disabled since birth and has also been an integral 
person in the development of the Camera Mouse.  
 The data trajectories in Figures 2-29 are from two testing sessions with one of our 
test subjects. After the first session we ran at the Campus School, the data, seen in 
Figures 30 and 31, could not be used for analysis. This was evident during the testing 
session. The subjects at the Campus School were unresponsive and did not seem to 
comprehend the instructions given to them to complete the test. This became one of the 
major setbacks in this project.  



 During the last two weeks of my stay at Boston University, another test subject 
agreed to come in and help us with our testing. He successfully ran the test twice, and 
from these runs we were able to analyze his movement and compare it to the movement 
of the non-disabled users.  
 

Analysis 
 

 We used both quantitative and qualitative methods to analyze the motion 
trajectories of the disabled and non-disabled users. The quantitative methods included 
measuring how long it took each subject to complete the test, finding the length 
difference between the approximate shortest path and the actual path taken and finding 
the mean distance the actual path was from the shortest path. The shortest path was 
determined by finding the coordinates of the mouse clicks on each target and finding the 
straight-line paths between each of these coordinates. To find the length difference, the 
shortest path length was found by adding up the distance between each target coordinate, 
the total path length was found by adding up the distance between each screen coordinate 
recorded, and then these the shortest path length was subtracted from the total path 
length. A diagram of how the mean distance was found can be seen in Figure 32.  
 Using the quantitative methods of analyzing the trajectories of disabled subjects 
and the non-disabled subjects, it was clear that it was much easier for the non-disabled 
subjects to complete the test. On average, it took the disabled subjects 58.706 seconds 
longer to complete the test. The paths that the disabled subjects took were, on average, 
21858.777 screen pixels longer than the shortest path while the paths the non-disabled 
subjects took were, on average, only 1352.278 screen pixels longer than the shortest path. 
The trajectories were also separated into their individual paths between two targets to see 
the specific paths taken between each target. For each of these trajectories, the mean 
distance from the shortest, straight-line path was calculated. This showed that not only 
were the non-disabled subjects able to complete the test faster, but they were also able to 
complete the test with greater accuracy. For all the trajectories, the average mean distance 
from the straight-line path for the non-disabled users was 13.019 screen pixels, while the 
average mean distance for the disabled users was 100.998 screen pixels.   
 The qualitative ways of analyzing the data were used to determine whether certain 
movements were easier for the disabled users to make. By looking at the path trajectories, 
judgments can be made based on how closely the actual path resembled the straight-line 
path. From these observations, we determined that certain directions of movement were 
easier to make than others.  
 The major directions of movement are right, left, up, down, or a diagonal 
combination of two. Additionally, these movements can be either long or short. By 
looking at Figures 4, 7, 15, 20, 21, and 29 it can be seen that these trajectories are more 
accurate than the others. These trajectories are, incidentally, all in the same direction: 
diagonal and either up and right, or down and left. From the tests with the disabled users, 
we concluded that this diagonal movement was the most natural and easiest direction of 
movement.  

 
 
 



Blink Detection 
 

 Another project of the summer was implementing a blink detection feature for the 
Camera Mouse as a substitution for mouse clicks. In some ways this is more accurate 
than the current dwell-time mouse click feature. The act of blinking is much more 
deliberate than dwelling in a certain radius for a certain amount of time. Also, many of 
the current Camera Mouse users cannot steadily hold the cursor in one spot for long. The 
settings of 1 second, .5 second, and even .25 second are too long. The most sensitive 
setting is less than .1 second to detect a mouse click. The problem with this is that any 
split-second pause will cause a click. This setting was used during the motion analysis 
testing, and many false clicks were produced, making the trajectories harder to find.  
 There are many ways to implement blink detection. The first way is based purely 
on difference images. Difference images are produced when two adjacent images from 
the video frames are taken and the pixels are subtracted. When a person blinks their eyes 
while keeping the rest of the head relatively still, the two images are almost identical, 
except in the area with the eyes. When the images are then subtracted, the areas that are 
almost identical have pixel values of almost 0, which translates to black. Where the eyes 
are, however, there is a distinct difference, making two grayish-white ovals. An example 
of this can be seen in Figure 33.  
 Taking this difference image, projection images can be made in the x and y 
directions. The projection in the x direction takes each column and adds up all the pixels 
in the column. The projection in the y direction takes each row and does the same. In a 
regular difference image where the whole head is moving, a projection in the x direction 
might look like Figure 34. In a difference image like Figure 33, the x and y projections 
will look like Figures 35 and 36.  
 The first blink detection method took the x and y projections of each difference 
image and looked for the distinct pattern in Figures 35 and 36. If the pattern was found, it 
would be counted as a blink and the mouse would be clicked. This method of blink 
detection worked pretty successfully.  
 There were some significant problems to this method. One problem was that by 
moving the head vertically a specific distance, the pattern in the projection images was 
identical to the blink pattern, causing false detections. Another problem was that any 
significant movement in the background would effectively break the blink detector by 
causing noise in the projection images.  
 Another way of detecting blinks was then attempted as an effort to avoid the 
above problems. It was based on the method described in [3]. Using the difference 
images to detect deliberate blinks, the Camera Mouse prompted the user to blink in the 
“eye boxes” until templates of the open and closed eye were found. This can be seen in 
Figure 37.  
 Once the templates were found, the images from the video frames were processed 
to look for these templates. Using a search area, the Normalized Correlation Coefficient 
was used to compare a region of the image to the template. Unfortunately, I ran out of 
time and reached the end of my summer at Boston University before I could finish this 
second method of blink detection.  
 If I had had time to finish this, here is how it would have worked. After using the 
Normalized Correlation Coefficient (NCC) to find the best match to the template of the 



closed eye, the value of the NCC would be compared to a threshold. The NCC value is 
one between -1 and 1, 1 being a perfect match, and -1 being an “opposite match” (i.e. a 
negative image). A certain threshold would have to be set to determine what values 
would actually qualify as a match. If the NCC value were greater than the set threshold, a 
counter would be incremented. If not, the counter would be reset to 0. Then the same 
analysis would be done with the next image. If the counter reached a certain value, say 
five frames in a row, a blink would be detected and the mouse would click.  
 

Obstacles 
 
 Throughout the ten weeks I was at Boston University, I came across many 
obstacles. The biggest problem was that after our first unsuccessful testing session at the 
Campus School, we did not get another chance to use our movement analysis tests with 
other subjects until the last week and a half of my summer. Due to this delay, I could not 
proceed on my research on the movement abilities of disabled Camera Mouse users and 
instead switched to working on implementing a blink detector for the software.  
 In doing this, I ran into a whole separate set of problems. I started out using an 
OpenCV function called matchTemplate to find matches to the eye templates. The 
documentation for OpenCV, however, is not very detailed, so, even with the help of 
several other people in the lab, I was unable to get this function to successfully find the 
blinks. After struggling with this for several weeks, I decided to write my own code to 
find the NCC of a template in a larger image. Before I could get this working, we got the 
opportunity to work with another test subject, and I went back to working on my original 
project.     
 

Conclusions and Future Work 
 
  The motion analysis testing showed that strictly horizontal or vertical movements 
are not very natural motions for the disabled test subjects. Also, longer diagonal 
trajectories that are either up and right or down and left seemed to be the easier and most 
accurate directions for the subjects.  

One way this can be seen is qualitative analysis just by looking at the trajectory 
plots. In Figures 15 and 29, for example, which are both horizontal movements up and to 
the right, it is clear from the plots that the paths taken by the subject in both are very 
close to the shortest, straight-line path. Another way this can be seen is through 
quantitative analysis. In the trajectories in Figures 4 and 15, the mean distances of the 
subject’s paths from the straight-line paths are 16.871 and 26.591, respectively. In all of 
the subject’s paths, these two are by far the closest to the straight-line paths. Also, just by 
looking at the trajectories, one can see that the path is the most accurate in Figure 29. 
This is backed up by the quantitative analysis, too. The mean distance for the path in 
Figure 29 is 20.307, which is the most accurate out of all the paths for that subject. In 
Figures 4, 15, and 29, the paths are all diagonal and either up and right or down and left.   

In the future, it would be greatly helpful to be able to run the movement analysis 
test with a wider range of disabled subjects. Having a bigger sample of users would help 
us to generalize better the way Camera Mouse users move. Time was also a crucial 



setback in the blink detection. With more time, hopefully the blink detection will be fully 
implemented into the Camera Mouse software.   
 

References 
 
[1] W. Akram, L. Tiberii and M. Betke. "A customizable camera-based human computer 
interaction system allowing people with disabilities autonomous hands free navigation of 
multiple computing tasks." C. Stephanidis, M. Pieper (Eds.), Universal Access in 
Ambient Intelligence Environments -- 9th International ERCIM Workshop "User 
Interfaces For All"  UI4ALL 2006, Königswinter, Germany, September 2006, Revised 
Papers. LNCS 4397, pages 28-42. Springer-Verlag. Technical report BU-CS-2006-006. 
 
[2] W. Akram, L. Tiberii, and M. Betke, 2008. "Designing and Evaluating 
Video-based Interfaces for Users with Motion Impairments," Universal 
Access in the Information Society.  In review. 
 
[3] K. Grauman, M. Betke, J. Gips, G. R. Bradski, "Communication via Eye Blinks - 
Detection and Duration Analysis in Real Time," Proceedings of the IEEE Computer 
Vision and Pattern Recognition Conference   CVPR 2001, Vol. 2, pp. 1010-1017, Kauai, 
Hawaii, December 2001. 
 
 

Figures 
 
Figure 1: The test design. The subject starts by clicking on the start button, then the next 
target (represented by the arrow) changes from a blue box to the image seen below. The 
subject then moves the cursor to the target and clicks on it. Once clicked on, the image 
returns to a blank, blue box, and the next target is activated.  
 

  
 



 
 
 
Figure 2-15: The individual trajectories of one of the disabled subjects 
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Figures 16-30: The trajectories from another disabled subject’s test run 
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Figure 30: Subject #1 from the Campus School 
 

 
 
Figure 31: Subject #2 from the Campus School 
 

 
 
Figure 32: How the mean distance from the shortest path is calculated 

 
 

 



 
Figure 33: Difference image of a distinct blink 
 

 
 
Figure 34: Projection image of entire head movement 
 

 
 
 
 
Figure 35: Horizontal projection of a blink 
 

 



 
 
Figure 36: Vertical projection of a blink 
 

 
 
Figure 37: A sample template of eyes  
 

 
 
 
 
 
 
 


