
Robot, Meet C++: The Process Of Writing an

Introductory C++ Lab Set That Utilizes a Robot

Genevieve Lynn Walker

Mathematics Department, Austin College,

Sherman, TX 75090 Email: glwalker@austincollege.edu

Abstract— This paper describes the process of creating a set
of labs that utilize a robot to convey computing concepts in
an introductory, C++ based Computer Science course. There
are existing programs which use robots in this manner, but
the University of Tennessee has special needs which require a
curriculum tailored to their introductory course. The process
my partner and I carried out involved five steps: research
and understanding, organization, brainstorming, solving, and
evaluation. We developed eight complete labs, two partially
complete, and one lab idea, and determined that these are
sufficient for the course because they meet three predefined
criteria.

I. INTRODUCTION

Currently, Computer Science is a bust business in the

major declaration market of American colleges. According

to the Computing Research Association, after seven years of

declines, the number of new CS majors in fall 2007 was

half of what it was in fall 2000 (15,958 versus 7,915) [7].

Luckily, many educators and concerned computing citizens

have been working to solve this problem. One group of

such people is the Institute for Personal Robots in Education

(IPRE). This institute is based out of the Georgia Institute

of Technology and Bryn Mawr College, and aims to “show

that by empowering every student with their own personal

robot, purchased with the class textbook, [IPRE] can improve

retention in and attraction of students to computer science”

[1]. Their current curriculum involves teaching computing con-

cepts using a small, inexpensive robot, the Parallax Scribbler,

and a Python interface.

A. Motivation

IPRE intends to make their curriculum easily available, and

easily implementable; the Institute maintains a Wiki Page,

where the textbook is avaliable for free [3]. They chose a

cheap robot so that the program would not be cost prohibitive,

and most information about the program is easily accessible.

Essentially, they hope that, if a professor is interested in the

idea of teaching computing with robots, it would be very easy

to drop the IPRE program right into an existing classroom

relatively quickly. Unfortunately, many college computing

departments have restrictions and requirements concerning the

language their introductory computing students must learn.

In the case of the University of Tennessee at Knoxville

(UTK), this means that all introductory computing classes

must be structured so that the students learn C++. If the IPRE

program is to be successful in reaching as many students as

possible, curriculum for the robots must be developed in other

computing languages.

The following project concerns the development of lab

curriculum for the Scribbler robots in a C++ environment. A

C++ robot API was developed by Richard Edwards, a graduate

student at UTK, alongside (or, rather, in front of) the set of

labs. UTK will use the robots, the new API, and the new set of

labs in one of its introductory CS 102 lab sections in the fall

of 2008. My partner, Allison Thompson, and I were assigned

the task of creating labs that would prepare students for future

Computer Science courses in a manner equivalent to or better

than the existing labs.

II. RELATED WORKS

The main resources in the development of the labs were the

notes from UTK’s CS 102 class, and the IPRE Myro textbook.

At the beginning of the summer, I envisioned the new labs

to be a direct melding of the two resources. Other important

resources have been the websites of the Georgia Tech and

Bryn Mawr Myro-based introductory and exploratory courses

and the lab write-ups for the CS 102 course last year and

in previous years . As I researched each of these sources,

I came to realize that the UTK CS 102 course covers many

more computing topics (several of them C++ specific) than the

Myro textbook, and that the Myro textbook includes topics that

are not necessary or that are impossible to include in a C++

course. Also, the CS 102 course is not functionally equivalent

to the introductory courses at Bryn Mawr and Georgia Tech.

The UTK course must prepare its students for the C++ based

course load that follows the introductory course while some of

the courses at the other schools are designed for non-Computer

Science majors.

Due to this difference, a new task became reconciling the

differences between the less demanding Myro curricula and the

relatively fast-paced C++ curricula. This meant adapting ideas

from the Myro textbook to the CS 102 lab write-ups. I relied

on the IPRE annual report and the wiki IPRE Philosophy page

to make sure that the adaptations I made were still in alignment

with the ideas and motivations of the Institute. Related works

are avaliable in [8] , [5] , [4], [2].

III. APPROACH

There were five stages in the creation of the labs. In

order, they are Research and Understanding, Organization,

Brainstorming, Solving, and, finally, Evaluation.



A. Research and Understanding

During the first stage, I read the CS 102 notes and Myro

Textbook, outlined both sources, and carried out the labs in

the Myro textbook. After making my way through all of the

instructional material, I made sure that I understood all of the

concepts presented and why they were included. This meant

analyzing the order of concepts in the Myro book and having

discussions with the professor and TA of the CS 102 course.

I also read through the CS 102 lab instructions from last

year. While we used these write-ups to get an idea of their

structure and the amount of material covered in each session,

we did not use them to model the order or depth of concepts in

the labs. As a result of scheduling, funding for TAs in the labs

next semester, and the fact that the labs are out-dated, it turns

out that the aforementioned write-ups will be re-written or

adjusted to better suit the future lab environment, regardless

of whether or not the robots are used in the lab. Thus, we

decided not to mirror the existing labs in any formal way;

though, we did use a few approaches from beginning labs

which were less likely to be drastically changed.

In this stage, we began using the developing API. It was

important to become comfortable with this interface and un-

derstand its potential. I wrote simple programs to experiment

with the developed functions and test their utility.

B. Organization

The next step was to organize all of the concepts that are

taught in each course and rank them. We had to decide which

concepts must be taught, which would be interesting for the

students to encounter, and which could not be addressed with

the new C++ API.

Once we had a good idea of the importance of the concepts,

we began brainstorming ideas for labs. Our goal—to create

labs that would prepare a solid computing and C++ knowledge

base for upcoming courses—will not be fully evaluated until

the end of the 2008 Fall semester. Therefore, we developed

the following criteria for the labs to ensure that the goal would

be met eventually. We feel that an appropriate set of labs will

(in order of priority):

1) Include the concepts covered in the CS 102 course

lecture in similar order and depth.

2) Utilize the robot in a non-artificial way that is engaging,

exciting, and not frustrating.

3) Include topics from the Myro textbook.

C. Brainstorming

To secure the first criterion, we took the list of necessary

concepts from the lecture notes, grouped them based on the

order in which they were taught and how many concepts could

be covered in a week. Then, we looked at each group and

created a lab that would incorporate as many concepts from

that group as possible. Most of the inspiration for the topics of

labs came from the C++ API that was developed concurrently

with our project. For example, we would notice that vectors

were used in the retrieval of the robot’s line following sensor

data, and would then develop a lab around a line following

capability and have it correspond to the lecture in which

vectors were taught.

We came across several obstacles in developing new ideas

for the labs. One such obstacle was how to introduce the idea

of building and using a class in C++. Obviously, the students

use the robot Scribbler object in all the programs that use the

robot. We needed, however, an object that they could create—

one that would also interact with the robot in a non-artificial

way. The last thing we wanted was to create a lab where the

students would build an object that either truly had nothing to

do with the robot or had no real purpose. We knew that the

students would see through this type of lab and exhibit the “I

don’t see the point of this” syndrome.

Our solution to the object problem was to create a Navi-

gator class which would contain methods for navigation and

exploration that would utilize the robot’s sensors. We were

already planning to write labs that incorporated line following,

blob-following, manual-driving, etc., so having the students

combine all of these methods into one object seemed (after

much brainstorming) the only logical solution to our problem.

D. Solving

Once all of the labs had been outlined, we went about

solving the labs. We would use the new C++ API to write

a program that would solve the lab problem we had outlined.

During this process, we would come across problems that we

had not anticipated. Sometimes we would find that we could

not solve the problem as we had planned, thus, the lab would

cover different concepts than expected, which may then affect

another lab. In this way, it was necessary to shuffle the order

and content of the labs several times. After we solved a lab,

we then used that experience to write the lab instructions. In

this way we could include hints and processes that would lead

the students in the direction to solve the problem in a way that

would teach the proper concepts.

E. Evaluation

In the Evaluation stage, my partner and I as well as the

lecture professor, other Computer Science professors, and the

TA for the upcoming course, took a look at all of the labs in

series and made sure that they all followed a logical pattern

and covered the concepts necessary for the course.

During evaluation, we realized that we need essentially

two more lab write-ups. Luckily, this only meant expanding

two one-week labs into two-week labs. This included adding

a blob-following application to the light-following lab, and

increasing the complexity of the previous panorama lab by

including smart-stitching instead of simple end-to-end picture

placement. The ideas of the panorama lab are based off of a

lab written by Keith O’Hara and carried out in the Scribbler’s

Python environment [6]. Most of the brainstorming for the

last additions had already been done, but had been omitted

because we felt that the labs were getting too long. Therefore,

we simply moved on to the Solving stage and added the lab

instructions to the final collection.



TABLE I

SUMMARY OF THE DEVELOPED LABS

Lab Description Concepts

1. Introduction Students are introduced to Linux, the Scrib-
bler robot, and the Lab’s structure.

Linux commands, a Robot Program, compil-
ers, execution cycle

2. Follow a Path Students write programs to convert tempera-
tures from one scale to another, inches to
seconds and degrees to seconds via robot
velocity. They also read in a path from the
standard input stream and print out data.

Arithmetic, least-squares regression, i/o
stream, while loops, conditional statements,
include statements, robot movement func-
tions

3. Braitenberg Vehi-
cles

Students build a few of Braitenberg’s vehi-
cles.

Retrieving sensor data, loops, normalization,
uphill analysis, downhill invention

4. Navigator Class Students begin creating their Navigator class,
add a few methods and write a driver pro-
gram to solve a simple problem (writing a
word).

Header files, scope, a full robot program,
classes

5. Light Following
(Navigator Class)

Students write a program to have the robot
follow a light source using the robot’s cam-
era.

Arrays, pixels, camera functions, enumera-
tion, switch statements, decision methods

6. Blob Following
(Navigator Class)

Students expand their light following meth-
ods to construct a method to follow a specific
object, or blob.

Robot training, pointers, blob picture func-
tions

7. Line Following
(Navigator Class)

Students write a program to have their robot
follow a line on the floor using the robots IR
sensors

Vectors, line sensor retrieval, casting, state
programming, decision loops, delete opera-
tor

8 and 9. Panorama
(Parts I and II)

Students write a program which commands
the robot to take a series of pictures, then
stitches them together (part one) at the com-
puted points of best overlap (part two).

Two dimensional arrays, vectors, pairs, main
function arguments, error messages, complex
nested for loops, memory management, pass
by address, scope

10. Auto Pilot and
Manual Drive (Navi-
gator Class)

Students write interactive programs which
allow a user to manually drive the robot or
specify a file with movement directions.

Functions for parsing, cstrings, File I/O

11. Obstacle course or
Creative assignment

Students work in teams to solve a maze,
obstacle course, or self determined problem.

Behavior-based decision making, open
ended

Of course, we will not be able to fully evaluate the effec-

tiveness of this process until the grades are submitted for the

fall CS 102 courses. This would technically be the final stage.

IV. RESULTS

At the end of the project, we produced eight complete labs,

two partially completed ones, and one lab idea for the final

lab. These labs are intended to span the entire course material.

Table I summarizes our final labs. It includes the lab’s title,

a short description, and the concepts that the students are

intended to encounter in the lab.

Lab eleven is incomplete because the final description of the

maze or open ended project and requirements of the lab will

depend greatly on how successful the students are at solving

the rest of the labs. There is the possibility that some of

the labs will not be completed, or that the students will be

very successful and will create even more behaviors for their

robots. The demands of the final project should reflect what

the students have accomplished in the course and utilize a

meaningful portion of what they have built during the semester.

V. SUMMARY AND FUTURE WORK

This summer’s project is only a small part of a nation-

wide effort to revitalize Computer Science education. I have

confidence that the new set of labs my partner and I have

developed will be a positive addition to this movement. The

set of labs cover a large and important section of C++ and

computing techniques, and they do so in an interactive and

engaging manner. The C++ API is also straightforward and

should be applicable to courses taught with the Scribbler robot

outside of the University of Tennessee. Next semester’s course

will be an experiment, and the results of the class—how well

the students do and how many of them choose to continue

studying Computer Science—will be analyzed and changes

will inevitably be made to the curriculum to reflect these

results.

VI. ACKNOWLEDGMENTS

This project would not have been possible without the

collaboration of my partner, Allison Thompson; the guidance

of my mentor, Dr. Lynne Parker; the knowledge and skills

of Richard Edwards; and the encouragement and resources of

Ms. Wallace Mayo and Dr. Bruce MacLennan.

REFERENCES

[1] Doug Blank. Ipre philosophy. IPRE Wiki, May 2008. Found at:
http://wiki.roboteducation.org/IPRE Philosophy.

[2] Intro to computing with robots, 2007. Found at:
http://www.static.cc.gatech.edu/classes/AY2008/cs1301-
robot fall/index.html.

[3] IPRE, editor. Learning Computing With

Robots. IPRE, second edition, 2008. Found at:
http://wiki.roboteducation.org/Learning Computing With Robots.

[4] Deepak Kumar. Cs 110: Introduction to computing, 2008. Found at:
http://cs.brynmawr.edu/Courses/cs110/spring2008/.

[5] University of Tennesse at Knoxville. Cs 102 labs, 2007-08. Found at:
http://www.cs.utk.edu/cs102/index.php?id=3.

[6] Keith O’Hara. Robot panoramas. IPRE Wiki, July 2008. Found at:
http://wiki.roboteducation.org/RobotPanoramas.



[7] Jay Vegso. Enrollments and degree production at us cs departments
drop further in 2006/2007. CRA Bulletin, March 2008. Found at:
http://www.cra.org/wp/index.php?p=139.

[8] J. Wallace-Mayo. Cs 102 class notes, 2007-08. Found at:
http://www.cs.utk.edu/cs102/.


