
Improving Student Engagement Through the
Incoporation of Robotics into Introductory

Computer Science Curricula

Allison Thompson
Department of Computer Science, Calvin College,

3201 Burton Street SE, Grand Rapids, MI 49546 Email: ajt5@calvin.edu

Abstract— It is fairly well known that the number of students
interested in majoring in Computer Science has been low for the
past few years, and that retaining students in the field has been
difficult. The Institute for Personal Robots in Education is in the
middle of a three-year experiment to determine if adding robots
to introductory Computer Science courses will increase interest
in Computer Science, and assist in the retention of students in
the major. The University of Tennessee is participating in that
experiment by conducting one of their own, adding robots to part
of their introductory Computer Science course. We assisted in
this project by creating the labs that will be used in that course.

I. INTRODUCTION

In the past few years the number of freshman interested in

pursuing a Computer Science major has fallen. Students seem

uninterested in the field. Those in the field have suggested

a plethora of possible solutions to fix this problem. Several

interest groups are working to implement some of those

suggestions, to determine if they will actually work. One such

group is the Institute for Personal Robots in Education (IPRE).

They are conducting an experiment to see if the addition of

robots to introductory Computer Science courses will attract

more students to the Computer Science major, as well as assist

in retaining more students in the program.

In this project, our objective was to design labs for the

University of Tennessee’s CS 102 course. This Fall, the Uni-

versity will be assisting with the IPRE experiment by testing

the theory of adding robots to introductory courses. Our goal

was to create labs that teach the introductory computing skills

necessary for students’ success in future Computer Science

courses while simultaneously introducing students to the basic

concepts of robotics, all in a way that would be more fun than

frustrating.

II. RELATED WORK

There are two other examples of curricula designed with

goals similar to ours. Both were created through IPRE, the

organization that instigated our project.

The first example was a course designed for middle school-

ers by students at Bryn Mawr College. Their goal was to

generate interest in Computer Science in students at an earlier

age, as a means of attracting more potential majors to the dis-

cipline. They designed stimulating and engaging [2] activities

that used Python and the Parallax Scribbler robots, in hopes

that these activities would increase interest in and awareness

of the computing disciplines. They also added some functions

to the existing Myro infrastructure (more details on Myro

later) to simplify the more complex aspects of Python. By

doing so, the Bryn Mawr students exposed their participants to

actual programming without necessitating that they understand

complicated syntax.
At the end of their experiment, the number of middle

schoolers who thought that computing was fun, feasible, and

useful had increased. Most of the participants were more

interested in computing as a result of the course; however,

the number of students interested in taking courses involving

robots had decreased, as had the number who said they enjoyed

the challenge of computing [2]. The Bryn Mawr students

in charge of the experiment suspect these negative shifts of

opinion were caused by the not infrequent malfunctions of

the robots.
The Bryn Mawr students believed their approach was suc-

cessful in its design and in communicating concepts; though,

as they note in their conclusion, a larger, more robust dataset

[2] would be needed for further improvements.
The second example is the basic IPRE curriculum, off

of which, in theory, any course that makes use of personal

robots in education could be based, though the authors of the

report on IPRE’s work do not make such claims directly. The

IPRE curriculum was designed with the goal of presenting a

motivating and relevant course that would excite students and

get them hooked on computer science. Rather than create a

robotics course, IPRE worked to create an introductory CS

course based on robotics [1].” The IPRE curriculum is based

on these key ideas:

• use of a personal robot

• tools that have a low floor and a high ceiling; i.e., that

are easy for a novice to learn, but also that are of a high

enough power that an expert could continue to use them

• expand students’ perceptions of computing [1]

IPRE notes that it is essential to their approach that each

student have his or her own robot [1]. IPRE regards low price,

portability/convenience, and robustness as the most import

features of the robots chosen for the course. The authors note

that previous work found that students who are only able to

use robots during assigned lab hours suffer when compared

to peers who don’t need access to the lab to work on their

(nonrobot) programs [1].” In other words, IPRE discovered

that the convenience of the robots’ portability must extend

also to the use of the robots: students needed to be able to take

the robots with them and use them anywhere for the robots to

be an effective motivational tool.

With these key ideas and concepts in mind, IPRE chose to

use the Parallax Scribbler robots in their introductory course.

They also created an upgrade dongle to upgrade and extend

the functionality of the robots. To keep the robots affordable,

IPRE curriculum designers considered robustness only after

price, with their ultimate goal being to keep the robot/textbook

cost below $150, roughly the equivalent of other introductory

science textbooks.

IPRE also designed a programming infrastructure they call

Myro to support their curriculum’s goals. Myro’s primary

purpose is to allow novices to easily control a personal robot

while learning basic programming concepts [1].” That is to

say, Myro allows students to learn basic programming and

computing concepts without forcing them to learn relatively

complex robotics concepts at the same time. Myro is also a

cross-platform tool, and works on all major operating systems.

Myro was initially created in Python, a high-level interpreted

scripting language that IPRE believes demonstrates many of

their pedagogical goals on its own [1]. The authors note that

Python’s built-in development environment lets students start

work quickly Python’s interpreter allows students to explore

easily, without the limit of the save-compile-run routine so

well known to veteran programmers.

The IPRE curriculum designers also work to keep each

programming assignment tied to the robot and a physical

problem that it must solve [1],” to underscore the fact that

CS is not merely the writing of code, but a tool that can be

used in general problem solving. In fact, they believe the most

important aspect of their design to be embedding robots in the

introductory course in a way that seems natural and inviting

for students. They note that doing so required rethinking of

the traditional sequence of topics presented in CS1 [1].”

IPRE has begun using their designs in multiple classes,

though at the time of the writing of this paper, they were not

very far into the analysis stage of their work, and no results

were publicized in this document. Despite this, the first IPRE

Annual Report is available on the IPRE website, and the results

it reports are mixed. Based on surveys issued throughout the

course, both at Bryn Mawr College, in a section comprised

mostly of Computer Science majors, and at Georgia Tech, in

a section of non-CS majors, students found the robots easy

to use, and were comfortable working with the robots. While

computer science majors were intrigued by the robots, and

became more excited about computing, non-majors were not

as likely to find the course important, or to want to work

with robots again. Non-majors in the robot course at Georgia

Tech were less likely to discuss their assignments with other

students not enrolled in the course than those students in non-

robot sections of the course [3].

IPRE does not offer any firm analysis of their results, but

it seems clear enough that their approach is at least somewhat

successful in retaining and increasing the interest of students

who intend to major in Computer Science. It is unfortunate

that non-CS majors were less interested in computing upon

completion of the course, but perhaps refinement of the

software and hardware used in the course will change that.

No real conclusions can be drawn until the end of the three-

year experiment.

III. APPROACH

Although the goals of the Bryn Mawr students had much

in common with ours – we both sought to increase awareness

of and interest in computing – their approach and ours were

different out of necessity. The Bryn Mawr students worked for

only eight weeks, instead of a semester. Also, because middle

schoolers and college students approach problems and learn

differently, the method of teaching the two groups must be

different. This does not mean that either approach was better.

In some ways, Bryn Mawr did what we are attempting, but

they worked on a smaller scale, with younger students, and as

such, they had to approach their work in a different manner

than we did.

There were several key differences and similarities between

our approach and that of the IPRE course designers. Both

approaches aim to increase the interest of students in Computer

Science by using the Parallax Scribbler robots. The IPRE

approach uses Python, but we use C++. Although C++ lacks

the advantage of Python’s interpreter, it does share the key

feature defined by the IPRE approach of a low floor and a high

ceiling. The merits of using Python or C++ in introductory

Computer Science courses is an ongoing debate that did

not, actually, figure in our decision to use C++ here. In

this experiment, all CS 102 students will attend the same

lectures. One lab section will work with the robots, while

the other sections will work on the normal labs. The existing

introductory courses at the University of Tennessee use C++,

and so our labs must also be based in that language. It is

simply not possible to change languages at this time without

disrupting the entire structure of the courses in the UT EECS

department.

As mentioned in the summary of related work, the designers

of the IPRE course discovered it was necessary to restructure

the introductory course, and changed the order in which topics

are presented. Although that would make sense, and should be

looked into as an option if this course is successful, it was not

possible for us to radically change the order. As previously

noted, all students will attend the same lectures, making it

impractical to alter the current syllabus. We did add some

additional explanation of basic computing concepts to the labs,

if it was necessary to introduce a concept slightly ahead of

schedule, but for the most part, we tried to avoid using any

topics that had not been discussed during the lecture period.

All explanation of robotics concepts and use of the C++ Myro

infrastructure was confined to appropriate sections in the labs.

Because the initial experiment will not be complete until

the end of the UT Fall 2008 Semester, we needed some way

to evaluate the labs we had created before that point. With

that end in mind, we designed several criteria and rules to use

both in the creation and evaluation of the labs:

• opportunity: the labs must provide students with the

opportunity to practice most of the basic CS concepts

covered in lecture

• non-displacement: use of the robots/robotics concepts in

the labs must not displace the CS concepts students will

need in future courses

• utility: labs should avoid using the robots for the sake

of using them – if there is not a logical way to use the

robots to teach a computing concept, the robots should

be left out of that lab

• clarity: labs should be easy to understand, and their

instructions should be easy to understand

A. Opportunity

To truly understand a how a computing concept works,

students need the chance to actually implement that concept.

For example, it is one thing to be told that arrays are zero-

indexed, and another thing to use arrays and remember that

you cannot access an element at array[size of array], because

that element does not exist. Students in non-robot sections

of the lab will have the opportunity to practice most of the

concepts they learn in class. As many students enrolled in CS

102 will go on to take the next course in the sequence, we

must take steps to ensure students in the robot section will not

be at a disadvantage compared to those in regular sections

B. Non-Displacement

This criterion is closely related to the first, Opportunity.

To get students excited about CS by using robots, we must

teach them some robotics concepts. They must also learn to

interact with the robots using the C++ version of the Myro

infrastructure (created by a UT grad student). Students in

this section will have more to learn than other students, so

it is important that we find a balance between learning C++

and basic computing concepts, and learning the quirks and

concepts of the Scribbler robots and their interface.

C. Utility

While our aim was to use the robots in every lab and, as

IPRE did, to incorporate a problem for the robot to solve into

each lab, we also made it a goal not to use the robot in a

stupid way. That is to say, if a situation arose in which we

could not think of a good problem for the robot to solve, and

we could not incorporate the robots in another logical way,

we would leave the robot out of all or part of that lab.

D. Clarity

The professor in charge of CS 102 is rewriting several of

the existing labs, partially because they are unclear. In their

current state, it can take more than one reading of a set of

instructions to determine what, exactly, is required. With that

in mind, we set the criterion of clarity in place: students

should be able to easily tell after one (careful) reading what is

required, and what they will have to do. The style of the labs

should be simple, and the writing should be clear. Multiple

proofreaders should look at each lab, to keep spelling and

grammar mistakes to a minimum. Students should not have to

struggle with anything other than their code to complete a lab.

IV. RESULTS AND ANALYSIS

We worked on our labs for eight weeks this Summer.

We created nine labs that students will work on in the Fall

Semester. One lab will span two weeks, the others are all

intended to be completed within a one week period. We

also created a cascading style-sheet (CSS) to display the labs

online. What follows is an analysis of the labs according to

the criteria listed above:

A. Opportunity

We believe we were successful in creating opportunities for

students to practice almost all of the basic computing concepts

covered during the lecture periods. We did not cover every

topic directly for example, there is no lab that deals directly

with vectors; however, the students will use vectors when

they use the C++ version of Myro, as several functions have

vector as a return type. The students get ample opportunities to

practice most C++ concepts. The only thing they may discover

they lack is practice in creating classes. They do create one

class, but we had a great deal of difficulty finding ways for

the students to use classes and robots while still conforming

to our utility requirement. In the end, we chose to have them

create one complicated class. This is not as negative an effect

as it initially seems. Students do not use C++ again until

their object-oriented programming course, where they will

undoubtedly get more experience.

B. Non-Displacement

Following this criterion turned out to be more complicated

than we anticipated, but not impossible. One example lab

where we encountered a struggle was in lab 3, in which

students implement several of Braitenberg’s vehicles as part

of an exploration of programming robots to emulate lifelike

behavior giving the robots a low-level form of artificial

intelligence. Figuring out how to explain the concepts of

Braitenberg vehicles and remind students of the programming

concepts they would need without overwhelming students with

too much information was difficult. We solved the problem by

giving a non-detailed explanation of Braitenberg’s vehicles,

with a link to a source of more information. In this way,

students are not overwhelmed with a lot of new information.

We also chose to give them detailed guidance for most of

the lab, so that they could spend more time implementing the

vehicles and learning programming concepts than struggling

to understand a somewhat obtuse robotics concept. (This also

complies with our clarity criterion.)

C. Utility

There was only one instance in which we did not use the

robot for part of lab because we could not find a logical,

intelligent way to do so. It occurred in the first part of lab two.

We thought it was important that students in the robot section

get the same early introduction to doing arithmetic in C++, but

could not think of a way to do so with the robots using the

students’ knowledge at that point. We chose to assign the same

temperature conversion program that is in the existing labs.

We initially thought we would have to do something similar

to introduce students to the concept of 2D arrays, but we came

up with the idea to use the robots’ cameras and images as a

logical vehicle. We created lab 7, the panorama lab, in which

students must manipulate 2D arrays to edit images and produce

a panoramic view based on several pictures taken by the robot.

In every other instance, a way to use the robots in an intelligent

problem was relatively easy to come up with.

D. Clarity

We read over each lab multiple times, and had the course’s

TA read through them all, as well. The lecturer for the course

will read and correct each lab before assigning it to the

students. We added a method of notation to each lab: at the

end of each section, we have added a subsection labeled Do

This. The idea behind this is that it makes instructions doubly

clear. The Do This subsection summarizes in one or two

sentences what the students must do for each part of the lab.

As previously mentioned, we also created the cascading style-

sheet to make displaying the labs easy and clear. The style-

sheet also makes it easy to maintain a consistent appearance

throughout the labs.

V. CONCLUSION

We believe that we have created labs that will provide

students with the opportunity to put what they learn in lectures

and from reading their textbooks into practice, with activities

that will let them explore less boring aspects of Computer

Science and of computing as a whole. We hope that the

labs will show them that Computer Science is not just about

cranking out lines of code, but about solving problems, big

and small – in other words, labs that will show them that

Computer Science is not a boring or useless discipline, but

one that is exciting, interesting, and worth devoting a career

to.

VI. FUTURE WORK

University of Tennessee Computer Science faculty will use

surveys and other assessment tools to evaluate the use of robots

in their introductory class over the course of the next two

semesters. Based on the results from those tools, and com-

parisons between the sections of class that did not use robots

and those results, the faculty will determine the success of

the experiment. The University will publish the results. If the

experiment is considered successful, the EECS department will

begin work to add robotic elements to subsequent Computer

Science and Engineering courses.

REFERENCES

[1] Tucker Balch et al. Designing personal robots for education: Hardware,
software, and curriculum. IEEE Pervasive Computing, 7(2):5–9, Apr-Jun
2008.

[2] Mansi Gupta, Marwa Nur Muhammad, and Shikha Prashad. Robots byte
in: An exploration of computer science education in middle school. Found
on IPRE website: http://roboteducation.org/files/CREU Final Report.pdf.

[3] The institute for personal robots in education 2007 annual report. Annual
report, Institute for Personal Robots in Education, 2007.

