The Role of Parts-Of-Speech in Java Program Identifiers

Meilani Williams, Emily Hill, Lori Pollock, and Vijay Shanker
Computer & Information Science
{mwilliam, hill, pollock, vijay } @cis.udel.edu

ABSTRACT
In today’s largest and complex software, a piece of code will need to be read and understood by many
software developers. To communicate their thought processes in code, developers use meaningful
identifier names. Thus, identifiers capture what a developer intends to accomplish with a portion of
code. We have found that natural language clues in identifiers can improve automated software tools
to increase developer program comprehension and facilitate software maintenance tasks. In this paper,
we present a study of word usage in Java program identifiers. We present our case study methodology,
examples of word usage, observations from the study, and how these observations can improve
automated software tools. This research study was sponsored by the Computer Research Association
for Women Distributed Mentor Program (CRA-W DMP).

1. INTRODUCTION

Today’s large and complex code makes software maintenance tasks difficult. It takes developers a
considerable amount of time to understand the software system well enough to make correct
maintenance changes: throughout the life cycle of an application, as much as 60-90% of resources are
devoted to modifying the application to meet new requirements and fix faults [2]. Software
maintenance is more expensive when code is not easy for developers to understand. Therefore, in order
to decrease software maintenance time and expense, software tools must be able to help developers
quickly comprehend and effectively modify code.

To reduce the cost of software maintenance, previous work [5,6] has demonstrated that natural
language clues in program identifiers can be used to improve software tools. Because developers use
meaningful identifier names to communicate thought processes in code, identifiers capture what a
developer intends to accomplish with a portion of code [4]. Thus, software tool developers can
leverage these natural clues found in meaningful identifiers to help developers better understand code.

In program identifiers, developers may use English words in a specific way. For example, consider the
preposition ‘to’ in the method name toString. The ‘to’ actually implies a conversion action, such as
‘convert this object to a string’. A software search tool can leverage this information to successfully
return relevant methods like ‘to String’ for a query such as ‘convert string’.

Thus by studying word usage in Java program identifies we can find natural language clues like ‘to’
that can be used to improve software tools. Based on our observation of how the preposition ‘to’ was


mailto:mwilliam@cis.udel.edu

used, we decided to research parts of speech (POS) with a focus on preposition word usage and the
potential effect on software tools. Several researchers have studied the effect of POS on Java program
identifiers, but they focused on the relationship of noun and verb usage in code [4,6]. In this paper, we
investigate how programmers use prepositions in Java program identifiers. Our study covers the
specific use of prepositions in field, method, and class declarations. We used these observations to
show how Java program identifiers can improve software tools to increase developer program
comprehension and facilitate software maintenance tasks.

2. RELATED WORK

In spite of the fact that identifier names do not affect program execution, existing work has
demonstrated that developers do select meaningful identifier names [1,4]. Liblit et al. discovered that
method names may be defined using verbs in different moods, and that these moods can provide
insights into a method's functionality [4]. For example, imperative verbs such as add, addaAll,
remove, and set tend to indicate an action being taken. In contrast, indicative verbs such as
contains or equals imply a function returns a factual, boolean assertion. Finally, methods that
simply return objects tend to have names composed of noun phrases: capacity, clone,
lastIndexOf, size.

As aresult, it is possible to use the natural language clues in identifiers to improve software tools. For
instance, Shepherd et al. used noun and verb usage in identifiers to develop a concern location tool [6].
This same group later used natural language clues such as antonym verb usage to improve an
automated aspect mining tool [5]. Both works influenced our research in the use of prepositions as
natural language clues in Java identifiers.

3. METHODOLOGY

We developed an automated software analysis tool to extract preposition word usage samples. For
each field name we extracted the field’s declaration and two succeeding lines of code. For method
declarations we extracted the declaration along with five succeeding lines of code. For classes we
extracted the class declaration plus ten lines of succeeding code. We also extracted the leading
comment for any field, method, or class declaration for each sample.

Figure 1 shows the 15 subject applications we extracted samples from. To do this we tokenized all
field, method, and class identifier declarations by splitting on punctuation and camel case (for example,
the identifier ASTVi si t or would be split into the terms ‘AST’ and ‘Vi si t or ’). We then used the
UNIX spel | dictionary to remove tokens that are not words, thus eliminating abbreviations and other
non-words. To determine which words were prepositions, we used the CLAWS4 part of speech tagger
[3]. Finally, we extracted samples of prepositions from the subject programs. We analyzed prepositions
that occurred at least 250 or more times in the subject applications. We noted the similarities and
differences of how prepositions were used in identifiers versus English text which determined whether
the preposition could be used to improve software tools.



Program Program Description - Ig:s: = #::T:t:::h
Dguitar a viewer for Guitar Pro tablature files 13,322 1,211
Drawswf animated SWF drawing application 27.674 2,747
Freemind mind map manager 70,341 6,110
Gantt client application to plan projects using Gantt Charts 43,245 4,941
Ireport report generation and editing application 74,392 5.672
J25E1.5 Jawa APl Implementation 1,509,015 115,790
Jajuk music player and organizer 30.847 2,137
JavaHMO access and display media 23,797 1,532
JbidwatcherlOpre6 |online auction sniping application 22,997 1,918
Jftp Java FTP implementation 34,426 2,379
JhotDraw Java drawing application 39.179 4,267
Jrobin chart and graph generator 19,469 1,913
MegaMek Java implementation of BattleTech 147,404 9,256
PlanetaMessenger |An Instant Messenger (IM) 11,125 1,142
Prefuse graph wvisualization toolkit 40,956 5.023

Figure 1. Subject Applications
4. RESULTS
® SequenceToM di TrackEvent s()
® applyStylesTo(El enent el em
to ® fireOnAddUser ToContactList(String strUserld)
® ResourceAssi gnnent nyAssi gnnent ToTask;
® addASModel (ASMbdel abstract Schenm)
® Wl dcardType asW /I dcardType()
as ® DboardSaveAs()
® addASMbdel (ASMbdel abstract Schenms)
® Jnenultem fil eBoardSaveAsl nage

Table 1. Preposition Usage Samples for 'to' and 'as'

In our study, we found that four prepositions had specific meanings different than English text. The

prepositions “to” and “as” imply nonexistent verbs within programs. These words were used for

conversions; for example the t oSt ri ng() method converts an object to a string. The word “as” also
indicates that a conversion has occurred within a program or a specific object, for example, the
get G adi ent AsSVQE ) method, which converts a gradient to an SVG object. Table 1 shows more

examples of ‘to’ and ‘as’ indicating conversions. Software tools such as search tools can leverage this

information to provide improved search results. When a developer is searching through the code for

methods dealing with conversions the search tool would be able to extract relevant methods that

include “to”

and “as”.



http://www.google.com/search?hl=en&q=allinurl%3AElement+java.sun.com&bntI=I'm Feeling Lucky

boolean nextPage()

class NextVisualPositionAction
class NextWordAction

boolean hasNext ()

next

symbol symbol after dot()

String ALLOW DTD EVENTS AFTER ENDDTD FEATURE = "allow-dtd-events-
after after-endDTD"

boolean isAfterLast()
void reportInterruptAfterWait(int interruptMode)

Table 2. Preposition Usage Samples for 'next' and 'after’

We noted similar patterns with other prepositions. ‘Next’ and ‘after’ indicate time or position.
Additional samples of how these words are used to represent time and position can be seen in Table 2.
We note that ‘next’ is an adjective, but within Java program identifiers it can act as a preposition (for
example the get Next Tr ackPanel () indicates that this method retrieves the following track panel; it is
acting on that object). Because next indicates the order or sequence of events that must be performed in
a certain portion of code, it can be used as a beacon to help automatically summarize algorithms in
code.

The preposition ‘after’ acts in the same manner as ‘next’, by denoting an object’s placement or a
reference to time (for example, Schedul eAf t er Act i vi ty, which indicates when the following
task should be scheduled). Further, this natural language clue can give insight into the content of the
class, Schedul eAf t er Acti vi t y (meaning that the methods within this class will be focused on
how and when to schedule certain tasks). By leveraging how ‘after’ is used within identifiers software
tools can help increase developer program comprehension. With an overall summary of the algorithm
the developer spends less time trying to understand what is being implemented.

We analyzed other prepositions that were used similarly in programs as in English text. At present, we
were unable to determine how these prepositions could be leveraged to improve software tools.

® at: public int getLevel At(int offset), public static int
GRADE_CHECK MODI FI ED AT COM T = 2;, public void addProvi der At Front

® from: public static final GP4Slide FROM BELOW = new GP4Slide(- 1), private
Nunber Format . Fiel d get Fi el dFronm(int index, int direction), private
Cl ass fronCl ass;

® in: public void storelnRegister( int registerNunber ), public final
bool ean i nSanePackage(d assDefinition c), boolean inProgress;

e of: private int |engthOf Task , public static String val ueX (bool ean b),
private bool ean at EndOf Dat a;

® on: private class GP3EffectsOnBeat, public void centerOnHex(Coords c),
public class CopyOnWiteArrayli st

® into: public void drawlinto(Gaphics g), public static final int


http://www.google.com/search?hl=en&q=allinurl%3AGraphics+java.sun.com&bntI=I'm Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3AString+java.sun.com&bntI=I'm Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3AField+java.sun.com&bntI=I'm Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3ANumberFormat+java.sun.com&bntI=I'm Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3AString+java.sun.com&bntI=I'm Feeling Lucky

GET_URL_MODE_LOAD VARS | NTO LEVEL = 3;

® up: final public long getSysUpTinme(), public static final String
pageUpActi on = "page-up", protected void setUp()

® with: public class ByteBufferWithInfo, public Hashtable getElementsWithIDs(), public final static short
SQL_SUCCESS_WITH_INFO = 1;

® within: private void checkWt hi nBounds(Li st<Type> tvars, List<Type>
argunents, Warner warn), protected JFrane mw thin, private
bool ean noveW t hi nSel ect edRange

® without: protected void witeLongWthoutAlign(int x), public static C ass
| oadCl assWt hout (Ol assloader | oader, String classNane), public
static final bool ean W THOUT _CONTEXT = fal se;

Take for example the preposition “of”’. For the method vel oci t yOf (GP4Dynami ¢ dynami c),
“of” is used the same in the Java identifier as in English. Another example of similar use is “at” in a
field declaration at | nser t Row. , which refers to row placement giving insight into an order of when
an event will execute. Thus, the prepositions that are used similarly to English give no natural language
clues beyond their English definitions.

S. CONCLUSIONS & FUTURE WORK

By studying the use of prepositions in Java program identifiers, we gained valuable insights into
natural language clues that can be used to improve software tools such as searching and automatic
algorithm summarization. In the future, we plan to analyze more prepositions and analyze word usage
samples from different subject programs, integrate our observations into existing software tools, and
evaluate our rules' effectiveness. Further analysis will also enable us to better evaluate how such
natural language clues can improve software tools.

6. REFERENCES

[1] B. Caprile and P. Tonella. Nomen est omen: Analyzing the language of function identifiers. IN WCRE’ 99:
Proceedings of the Sixth Working Conference on Reverse Engineering, page 112, 1999.

[2]L. Erlikh. Leveraging legacy system dollars for e-business. IT Professional, 2(3):17-23, 2000.

[3] R. Garside and N. Smith: A hybrid grammatical tagger: CLAWSA4. In Garside, R., Leech, G., and McEnery, A. (eds.)
Corpus Annotation: Linguistic Information from Computer Text Corpora, 1997.

[4] Ben Liblit, Andrew Begel, and Eve Sweeser. Cognitive perspectives on the role of naming in

computer programs. In Proceedings of the 18" Annual Psychology of Programming Workshop,

2006.

[5] David Shepherd, Lori Pollock, and K. Vijay-Shanker, "Case Study: Supplementing Program Analysis with Natural
Language Analysis to Improve a Reverse Engineering Task", Workshop on Program Analysis for Software Tools and

Engineering (PASTE 2007), June 2007.


http://www.google.com/search?hl=en&q=allinurl%3AString+java.sun.com&bntI=I'm Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3AClassLoader+java.sun.com&bntI=I'm Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3AJFrame+java.sun.com&bntI=I'm Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3AHashtable+java.sun.com&bntI=I'm Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3AString+java.sun.com&bntI=I'm Feeling Lucky

[6] David Shepherd , Zachary P. Fry, Emily Hill, Lori Pollock, and K. Vijay-Shanker. Using natural
language program analysis to locate and understand action-oriented concerns. In AOSD ‘07: Proceedings of the 6"

international conference on Aspect-oriented software development, 2007.



