
Feature-Based Face Recognition
for Vending Machine vs. AMBER Alert

Adriana Kovashka
Pomona College

Margaret Martonosi
Princeton University

Abstract

Face recognition systems are an important field in
computer vision and are currently used to monitor
for dangerous persons and track criminals. A face
recognition system uses a database of images and
compares another image against those to find a
match, if one exists. We implemented an original
face recognizer in Java and tested it for recall and ac-
curacy with three image sets. For each facial image,
we created a fingerprint of 18 features, such as the
RGB values for the eye color, the width and height
of the face, various ratios etc. We utilized WEKA
machine learning to determine which features are
most important and give appropriate weights. We
found that the distances between the eyes, nose, and
mouth were not useful as they vary little between
people. Overall, our method achieved very good
results. For scenarios like surveillance which require
low false negatives, our accuracy rate was 75%
(and 2.3% false negatives). For vending machine
authentication where low false positives are needed,
we had 49.3% accuracy (and 1.5% false positives).
Our system often outperformed WEKA since it uses
a more flexible classification rule in the form of a
similarity score rather than a binary decision tree.

1 Introduction

Face recognition is one of the most exciting topics in
computer vision today. It has numerous applications,
ranging from security and surveillance to entertain-
ment websites. Face recognition software is commer-
cially available from various companies which adver-

tise it as useful in banks, airports, and other institu-
tions for screening customers. Some countries, such
as Germany and Australia, have deployed face recog-
nition at borders and customs for automatic passport
control [4]. Face recognition systems have been used
to monitor for dangerous persons during large events
such as SuperBowl and to (attempt to) track down
abductors, for example during the disappearance of
three-year-old Madeline McCann [4].

There are two main stages in the process of face
recognition. The first is face detection, or the ability
of a computer to independently discern the feature of
a face in an image. The second part of the process
involves the preparation of a fingerprint for the image
and then a comparison of that fingerprint to the fin-
gerprints of other images in a database. Different al-
gorithms use different facial features for a fingerprint,
and they also differ fundamentally in their approach
to comparing images.

Many challenges exist for face recognition. In
some cases, depending on the different methods im-
plemented to create a fingerprint for an image, the
robustness of the system can be obstructed by hu-
mans who alter their facial features through wearing
colored contact lenses, growing a mustache, putting
on intense make-up, etc. Various ethical concerns
are also related to the process of recording, study-
ing, and recognizing faces. Many individuals do not
approve of surveillance systems which take numer-
ous photographs of people who have not given their
permission for these photographs to be taken. Fur-
thermore, since skin color and other physical features
of the face related to race are used in the fingerprint
of a person, face recognition might be accused of fa-
cilitating racial discrimination.



Our implementation of face recognition uses a
fairly simple fingerprint which includes eye and skin
color, ratios of distances between prominent facial
features, and absolute and relative values of width
and height of the face and the eyes. We tested our
system in two ways, both of which assume a specific
application of the program. The first is the identifi-
cation of people so that they can purchase items from
a vending machine using their previously created ac-
counts, without having to pay the machine directly
with cash. The second application is the identifica-
tion of people who are suspected of abduction, with
the possible inclusion of an improved and more robust
version of this program in an AMBER-alert-type sys-
tem.

The following section of this paper presents the pre-
vious work done by other researchers which relates to
our project. In Section 3, we discuss the specific im-
plementation of our face recognizer. Sections 4 and
5 analyze the the methods and results for our work.
Finally, Section 6 lists the conclusions we made and
possible future work, while the subsequent sections
present our acknowledgements and the resources we
used.

2 Related Work

Our work is part of the bigger “Space Aware and
Resource Aware Dynamic Network Architecture”
(SARANA) joint project of Princeton University
and Rutgers University. One goal of the SARANA
project is the development of an AMBER alert emer-
gency system [11]. AMBER alert, named after 9-
year-old Amber Hagerman who was abducted in
1997, is a system in which messages are displayed on
highways asking for people to respond if they have
information about the individual suspected of an ab-
duction. The SARANA AMBER alert system “ex-
ploits the existing infrastructure of stable and dy-
namic nodes within a physical space” to allow peo-
ple to respond and the suspect to be identified. In
particular, this system relies on cell phone messages
and dispersed surveillance web cameras. The pho-
tographs that these cameras take, along with pho-
tographs that cell phone owners can take with their

phone cameras, could be put through a face recogni-
tion system so that the suspect may be found.

Face recognition is not a new field, and an early
prototype of a feature-based approach was developed
over a hundred years ago. In the nineteenth century,
Alphonse Bertillon invented anthropometry, a system
of measurements of the physical features of crimi-
nals by which they could be identified [1]. Bertillon
took photographs of the eyes, noses, foreheads, chins,
profiles etc. of individuals and stored them in his
“database.” While this database was examined by
humans and not by computers, it relied on the same
biometric approach as modern feature-based face rec-
ognizing systems.

Many researchers have worked with feature-based
methods. One example of a face recognizer that relies
on the use of facial features is described in the paper
by Cox et al. [3]. Cox, Ghosn, and Yianilos used
a mixture-distance technique which performs at 95%
rate using distance records of 30 features whose lo-
cations were selected manually. The features include
width and height of the eyes, nose, mouth, face, and
differences between these from various points.

Feature-based methods are also used in object de-
tection. Viola and Jones present a feature-based
method in their paper [13]. Their system, which re-
lies on basic features rather than separate pixels and
uses a training set of 4916 facial images labeled man-
ually, performs 15 times faster than all previous face
detection algorithms and has a high rate of correct-
ness. Another paper [5] presents a different approach
which uses images from Google image search as a
training set for learning categories. Kremer of Rut-
gers University developed a face recognition system
which relies on the distances between pixels in two
superimposed images [9].

In his 2007 Ph.D. thesis, Wang studied the learn-
ing algorithms provided by WEKA [6] to determine
relationships between the parameters in data records.
He also reviewed WEKA’s InfoGainAttributeEval at-
tribute selector which ranks features based on their
importance for information gain as part of data min-
ing. We used his work [14] as reference in our own
use of WEKA’s algorithms.

2



3 System Overview

3.1 Face Detection

In our work, we implemented an original face recog-
nizing system in Java. For the face detection phase,
we used the program Visage, whose code was made
available for use on Sourceforge.net [10]. Visage is a
system written by Restom which, when connected to
a web camera, detects the face in the video stream
and tracks the eyes and nose. The original code also
allows the option of using winking with the eye as a
mouse click, and moving the nose to move the cursor.
We only use the part of the code which performs face
detection, with multiple modifications.

The altered Visage code reads a JPEG image from
a specified file and converts it to an array of pix-
els (represented by their RGB color) using classes
and methods provided by the Java Media Framework
(JMF) [7]. After that, Visage uses various algorithms
to detect a face. It superimposes a 3x2 matrix in the
upper part of an image and searches for dark regions
and a brighter one between those two, following cer-
tain criteria which can be found in the paper accom-
panying Restom’s work [10].

Our Face Recognizer code makes use of some fea-
tures which Visage detects in the face, such as the
eye pupils and the nose tip. Additionally, we use a
method in Visage which determines whether a pixel
lies in a skin region of the face or not, using statis-
tics for various skin types. We use this information
when creating a face mask whose coordinates help us
calculate the width and height of the face.

3.2 Face Recognition

As mentioned before, there are many methods for
performing face recognition, and the one we chose
is feature-based. For each face, we create a finger-
print which includes the following 18 features: (a)
red, green, and blue values for the eye color; (b) ra-
tios between these values denoted as RG, GB, and
RB; (c) the width and height of the eye and the ra-
tio between these values; (d) the ratio between the
distance between the two eyes and the distance be-
tween the eye-line and the nose tip; (e) the width and

height of the face and the ratio between these two
values; (f) the RGB values of the skin color; (g) the
angle of the chin; (h) the number of lines (as detected
by Hough transformation) passing around the chin.
These were chosen by inspection of facial images and
noting the differences between them, analyzing the
feasibility of extracting these features using the face
detection available from Visage, and comparing our
intuition about which features should be used with
other feature-based face recognition methods.

3.2.1 Extraction of Values and Database
Preparation

We compute the values for the above features, and
record them in a database. We use Visage to deter-
mine the location of the two eye pupils and extract
the eye-color by computing the average red, green,
and blue values of each pixel in a determined area
encompassing the eye pupil, excluding pixels which
represent a skin color. We also calculate the ratios
between the red and green, green and blue, and red
and blue values and record these. Using the location
of the eye pupils, we check a small rectangular re-
gion surrounding the eye pupil for the outermost left,
right, bottom, and top pixels which do not represent
a skin color. We sum up the widths and heights of
the two eyes and divide by two to obtain the average
width and height of the eye, as well as the ratio be-
tween these.

Next, we make a “face mask” by locating the nose
and a rectangular shape in which, for every pixel,
we check whether it represents a skin pixel. In this
case, we use a modification of the original isSkinPixel
method from Visage, in which the range allowed for a
pixel to be recognized as a skin pixel is smaller since
we want to avoid picking up hair color as skin as this
would disrupt the accuracy of our face bounding box.
Our modified method omits some skin pixels, but the
neighboring ones make up for these omissions. We
also want to have an elliptical mask since the face
is elliptical, so in the rectangular shape described
above, we check whether each pixel is at a specific
distance from the nose (shorter near the eyes, larger
near the chin and forehead). If so, and this pixel is
also a skin pixel, we include it in the face mask. In

3



Figure 1: Some measurements of facial features

order to avoid inefficiency, we do not store the ac-
tual pixels in an array. Since we are only interested
in finding the most extreme points of the bounding
box for the face, we keep track of the rightmost, left-
most, bottom, and top pixels of the face mask only.
We then compute the width and height of the face,
as well as the ratio between these, and record it in
the database. The bounding box for the face mask
is shown in Figure 1. Using the original isSkinPixel
method, which omits less pixels than our method,
we compute the red, green, and blue values for each
skin pixel and calculate their average, which we also
record in the database.

Finally, we use Hough Transform code by
Matthews available on [8] (and also used by the orig-
inal Visage code) to detect all regions in the image
which resemble straight lines. We use the Geom class
(used by Visage) to determine the angle of each line.
We eliminate lines which do not pass through the cen-
tral bottom part of the image and lines which have
have too large or too small slope and angle as these
are not likely to pass near the face. For the remain-
ing lines, we check through what elements each one
passes, and we exclude those lines for which half of
the pixels coincide with or are less than one pixel
apart from skin pixels. We do this because we are
only interested in lines around the face, not through
the face. We then group the left-going and right-
going lines, compute the average angle of each group,
and sum up the absolute value of the averages to ob-
tain the chin angle, which we record in the database.

Each record is given a name, which corresponds to
the person whose face is in the image. The format of
the record database is a TXT file.

For testing purposes, we also developed a Viewer
class, in which we display the JPEG image and high-
light various features of the face with different colors.

3.2.2 Reading the Database and Checking
for Matches

After preparing a database with images, we test our
database with the same images, recognizing each one
by checking for matches with existing records in the
database. We compute a fingerprint in the manner
described above, and then, for each record in the
database, we compute a score describing the simi-
larity between the currently checked image and that
record. As described in Section 4.1, we use machine
learning from WEKA [6] to determine what factors
are most important when computing this score. In
particular, we compute the differences for each fac-
tor (various RGB values, sizes, ratios, etc.) between
the current image value and the database record
value. We use the ranks provided by WEKA’s Info-
GainAttributeEval attribute selector as weights, and
we multiply the differences by these weights, then
sum up these products to arrive at the similarity
scores. Thus, a low score means high similarity with
the record. (When testing with images already in
the database, this score is zero when the image is
compared with the record describing the same im-
age.) The similarity scores are entered in an ar-
ray and sorted, excluding scores which are greater
than the score threshold. This threshold is smaller
for the vending machine application and larger for
AMBER alert, with current sample values of 75 and
150 respectively. After sorting, the top five matches
are recorded in a separate file. The program checks
whether a specified number (which we call match
threshold) of these top five matches has the same
person’s name, and if so, outputs this result. The
match threshold is different for the two different ap-
plications of our Face Recognizer. It is higher for the
vending machine application (currently 3 or 4) and
lower for AMBER alert (currently 2), for reasons de-
scribed in Section 5.

4



Figure 2: Order of execution for classes which use the
Face Recognizer

3.3 Deployment

One application of our face recognition code is for
identification of customers who wish to purchase
items from a vending machine. Our system provides
code which allows the capturing of an image through
a webcam and the analysis of this image through our
face recognizer. If a match is found, the customer is
allowed to purchase the item using funds from their
previously set-up account. The sum of money in their
record is updated accordingly.

The Face Recognizer package includes a class that
provides connectivity to a MySQL database which is
different from the image database described in Sec-
tion 3.2 and is used to store accounts. The four meth-
ods in this class set up the database, insert records in
it, and update those records by adding or subtracting
a specified sum of money.

The performance of the face recognizing system
can be tested with a supplied image set (or sets). The
order in which the two applications run and use face
recognition is illustrated in Figure 2 above.

4 Experimental Methods

4.1 WEKA

WEKA [6] provides data mining algorithms which
allow the extraction of important relationships be-

tween the data which are done using machine learn-
ing. We utilize WEKA to determine which features
are most important in order to give according weight
to the differences between the examined image and
the database records. We input the records we have
collected in our database, convert the record file to
the ARFF format which WEKA uses, and run one
of WEKA’s attribute selection methods, InfoGainAt-
tributeEval. The Ranker method gives the features
some rank, which we use as the weight of that feature
in our similarity score.

The purpose of WEKA is to classify input data
and generate a decision tree which determines under
what conditions (feature values) is another condition
true. WEKA’s 10-fold test separates the data into 10
groups and performs 10 trials, in which 9 groups serve
as the training set and 1 as the testing set. This test
is used to generate a correctness score for WEKA’s
classification. While we do not use the generated de-
cision tree, we use this test to obtain a general idea
about the quality and reliability of the data.

4.2 Image Sets

During the core part of our research process, we used
three different image sets, each of a different size. At
first, while only using some of the features of the fi-
nal version of our Face Recognizer, we used 480 of
the hundreds of images provided by Oxford Univer-
sity [12]. These were close-up images of 12 women
and 12 men on light green background, with 20 pho-
tographs per person. Our Face Recognizer worked
well with this database of images.

The second image set we used consisted of 450 im-
ages and was provided by [2]. Of these 450 we only
used 445, as the remaining 5 were single images, and
2 were hand-drawn. This set consisted of a vary-
ing number of images per person, with under 31 in-
dividuals total (of which we used 26). The images
showed the persons in different locations, with back-
ground which included numerous colorful elements.
The Face Recognizer did not perform as well with
this database.

The third set we used included images of people
in the Electrical Engineering department, taken in
one location, with a web-camera. It consisted of 132

5



images of 9 individuals, with a varying number of
images per person.

5 Results and Discussion

5.1 Performance

We tested our Face Recognizer with the three
datasets described above, and with different values
for the thresholds which our program uses (primarily
the score and match threshold described above). We
also compared our performance with that of WEKA.

We computed several scores. The first is a recall
score, which measures how many times there was
a match found, regardless of the correctness of the
match. The second four scores are true positive, false
positive, true negative, and false negative scores. The
true positive score measures how many of the total
matches are correct matches, and the false positive
one expresses the difference between the total num-
ber of matches and that of the correct ones. The
true negative score represents the number of images
for which no record was made as a face was not de-
tected. We called this “true negative” since the fail-
ure to recognize a face was not caused by faults in
the face-recognizing part of our system. Finally, the
false negative score describes how often we failed to
find a match when one could have been found. When
calculating the percentages for TP/FP rates, the to-
tal number of correct matches was divided by the
total number of images we tested the system with,
including ones for which we obtained no record due
to failure of the face detection part. The scores for
WEKA have been re-calculated to reflect the lack of
record for some of the photos.

5.1.1 Overview of Results for First and Sec-
ond Image Sets

For the first image database, our system achieved
a correctness score of 92.5%, while WEKA per-
formed with 90% correctness. For the second im-
age database, our classifier had 20.2% recall, while
WEKA recognized 21% images correctly, as shown
in Figure 3. When examining the database records,
we established that the vast difference between these

Figure 3: Performance for two very different image
sets

Figure 4: Performance of Face Recognizer with orig-
inal images and three different threshold configura-
tions

two pairs was caused by the face detector’s failure to
detect a face correctly. In fact, in images from the
second database, the face detector often picked up
various dark areas as the eyes since the background
was very complex, unlike the background in the first
database.

5.1.2 Results for the Third Image Set

We populated our image database in consecutive
steps, with images of different people added at dif-
ferent times. We also implemented the extraction of
various features at different times. In the figures be-
low, we present some of the results we obtain in the
second half of our research process.

6



Figure 5: Performance of Face Recognizer with im-
ages modified in Picasa and three different threshold
configurations

Figure 6: Role of normalization scheme

Figure 4 describes the performances of our system
with 132 images taken with a web-camera, none of
which were modified after their taking. The chart
shows the true positive, false positive, true negative,
false negative, and WEKA scores as described above.

Figure 5 above illustrates the Face Recognizer per-
formance with the same 132 whose contrast has been
modified using the “I’m Feeling Lucky” option of
Google’s Picasa program. As seen from the chart, the
performance of the system is significantly improved
since the images are clear, with higher contrast, and
features are more likely to be discerned and extracted
correctly.

The importance of a good normalization scheme
is evident from Figure 6. Such a scheme is crucial
as the features in the fingerprint have highly varying
ranges. For example, the RGB values for color are in

Figure 7: Weights for features as assigned by WEKA

the range 0 to 255, while the values for various ratios
are between 0 and 1.

The chart in Figure 7 compares the values which
WEKA assigned to the facial features at different
times of the development of our face recognition sys-
tem: early stage with fewer images, addition of mea-
surements for angle of chin and eye height and width,
and original images which have not been modified
through Picasa.

For research purposes, at one stage of the develop-
ment of our project we experimented with splitting
the third image set (described below) into two parts,
one that we only used for training and the other only
for testing. For the 20 images in the testing set, we
obtained a true positive score of 80% and false posi-
tive of 10%. In comparison, when the 20 images were
also part of the testing set, the score under the cur-
rent version of the program was 85% true positives
and 0% false negatives. Thus, while the performance
rate decreases for unknown images, this decrease is
small.

As expected, by varying the values for the match
and score thresholds, we obtained different results. In
particular, by increasing the match threshold (thus
requiring a higher number of the same name to ap-
pear in the top five matches) and decreasing the score
threshold (or allowing matches to be only slightly dif-
ferent from the examined image), we achieved low
false positive scores but higher false negative scores.
This threshold scheme is more appropriate for a
vending-machine type identification, since we would
like to be sure that we are not using the account of
person B to pay for the products which person A
wants to purchase. On the other hand, by decreasing

7



the match threshold and increasing the score thresh-
old, we achieve lower false negative and higher false
positive scores. In this AMBER-alert type case, it is
important not to miss any potential criminals, and
we are willing to flag some individuals for further ex-
amination even when these are not actual suspects
in order to minimize the chance of missing dangerous
suspects.

Our Face Recognizer system often performs better
than WEKA’s classifier. This observation could be
explained through the nature in which both systems
find matches. WEKA uses a decision tree, and an
image has to satisfy a set of conditions in order to
be recognized as a proper match. However, if it fails
just one condition, the match is not found correctly.
On the other hand, our face recognition system uses
a similarity score where each feature has a weight
rather than a system of yes/no conditions. Even if
an image fails to meet one of WEKA’s conditions, it
would still be recognized properly by our classifier as
long as the difference between its value that has been
rejected by WEKA and the database record is not
too large.

5.2 Observations

Throughout the course of our research, we made nu-
merous observations about factors that affect the per-
formance of our face recognizer and the process of
face recognition as a whole. We also implemented
the extraction of some some feature which did not
prove to be useful in our work.

5.2.1 Features Useful and Not Useful in Final
Recognizer

At the beginning of our work, we used a different
scoring scheme, which assigned a similarity score of 1
(closest match), 2, 3, or 4 (not likely to be a match) to
every record in the database, using different thresh-
olds for the differences between the features of the
examined image and the database records. How-
ever, since we could not calculate perfectly what these
thresholds must be, this scoring scheme only resulted
in moderate success.

We found that the distances between the eyes,

nose, and mouth in a face were not as useful as one
might suspect. For the first image set, we wrote a
method which found the location of the mouth by
looking for a darker region in a specified range under-
neath the nose tip. While the extraction and use of
this feature in the scoring scheme was useful for this
image set, it was not useful for the second two image
databases as a mouth could often not be found. How-
ever, we discovered that this failure would not affect
the performance of our Face Recognizer significantly
since the weights which WEKA assigned to the ra-
tios between the eyes / nose / mouth distances were
very small. By examining these ratios, we found that
they were often the same for all people. The ratio of
the distance between the eyes and that between the
eye-line and the nose was often 2.0, that of the dis-
tance between the eyes and that between the eye-line
and the mouth was 2.5, and the ratio of the eyes to
nose versus eyes to mouth distance was 0.8. Thus,
we found that these ratios would not be useful in our
code. In fact, in the later part of our work in which
we discarded the extraction of the mouth location
and only computed the first of the above-mentioned
ratios, WEKA assigned a weight of 0 to this ratio.

The skin color was normally assigned a high weight
by WEKA, often higher than the weight for the eye-
color, and it proved to help our face recognizer per-
form with better accuracy.

5.2.2 Problems Faced and Comparison with
Other Recognizers

The three main problems for our Face Recognizer
were the lighting, background, and color of skin. Un-
like some other face recognition systems, ours relies
on the use of color, and thus the RGB values we ex-
tracted were highly dependent on the amount of light
in the location where the pictures were taken. In fact,
while testing the recognizer with two different image
sets and adding the source as a parameter, we discov-
ered that this parameter was detected by WEKA as
one of the most important ones and was placed near
the top of the decision tree which WEKA generated.

The background in the images was also one of our
concerns due to the likelihood that the face detecting
algorithm would detect a false face. Thus, we tried to

8



use a background which included as few features as
possible. Unfortunately, the face detection algorithm
often worked incorrectly when we tried to detect the
face of a person with very dark skin.

One major advantage of our face recognizer in com-
parison with other system is that the moderate rota-
tion and tilt of the face do not affect performance
significantly. While other face recognizing systems
use matrices and compare the images on a pixel-by-
pixel level, ours extracts features no matter at what
angle they are located from other features.

5.3 General Concerns

5.3.1 Feature Altering

There are some features which our algorithm uses
that can quite easily be altered. For example, one can
wear colored contact lenses and thus decrease sub-
stantially the chance that our face recognizer would
detect a match. We tested this hypothesis by record-
ing the fingerprint for the same person wearing clear
contacts (brown eye color) and green contacts. For
each of the photos taken with green contact lenses,
the top five matches only included other green-eyed
photographs, and the same applied for the brown-
eyed photographs. Other features, such as the skin
color, can also be altered in order to disable recogni-
tion, although not as easily.

5.3.2 Ethical Issues

Face recognition can be used as a surveillance method
which many people might criticize. It invades the
privacy of the subjects, and it also performs close
analysis of their facial features and records this in-
formation. While the record database can normally
be kept secure, recording private data of this kind
without authorization involves a moral decision.

Additionally, the classification and recognition of
individuals based on facial features such as the width
of their eyes or their skin color requires discrimination
based on race. Again, such discrimination presents
an ethical concern.

6 Conclusions and Future
Work

This paper presented our implementation of a face
recognizing system using features of a face includ-
ing colors, distances, and ratios. Using its two de-
grees of freedom, our system allows two modes of
operation, one that results in very few false posi-
tives and another which results in few false nega-
tives. We have demonstrated various concerns related
to the face recognition process, such as the lighting
and background conditions in which the facial images
are taken. Our approach is relatively independent of
head tilt and rotation.

Our system could be improved in the future
through the development of a face detection algo-
rithm which is less prone to incorrectness and failure,
performs well regardless of the skin color, and uses a
more complete fingerprint which would help achieve
higher true positive and lower false positive and neg-
ative results. A more extensive feature set would also
prevent the chance of tricking the system through the
alteration of facial features.

7 Acknowledgments

We would like to thank the Computing Research As-
sociation and its Distributed Mentor Program which
sponsored this research. We are also thankful to the
members of the Princeton Electrical Engineering de-
partment who posed for our camera so we could use
their faces in the third image set.

8 Project Webpage

The website documenting our work on this project
can be found here:

http://www.princeton.edu/~kovashka

This page provides some useful information and
links to resources.

9



References

[1] “Alphonse Bertillon.” Wikipedia, The Free
Encyclopedia. 11 Jul 2007, 06:24 UTC.
Wikimedia Foundation, Inc. 20 Jul 2007.
http://en.wikipedia.org/wiki/Bertillon.

[2] “Computational Vision: Archive.” 17 Mar
2005. http://www.vision.caltech.edu/html-
files/archive.html.

[3] Cox, Ingemar J., Joumana Ghosn, and Peter N.
Yianilos. “Feature-Based Face Recognition Us-
ing Mixture-Distance.”

[4] “Facial recognition system.” Wikipedia,
The Free Encyclopedia. 25 Jun 2007, 05:53
UTC. Wikimedia Foundation, Inc. 20 Jul 2007.
http://en.wikipedia.org/wiki/Facial recognition system.

[5] Fergus, R., L. Fei-Fei, P. Persona, and A.
Zisserman. “Learning Object Categories from
Google’s Image Search.”

[6] Ian H. Witten and Eibe Frank. “Data Min-
ing: Practical machine learning tools and tech-
niques.” 2nd Edition. Morgan Kaufmann, San
Francisco, 2005.

[7] “Java Media Framework API (JMF).”
http://java.sun.com/products/java-
media/jmf/.

[8] “Koders - Source Code Search Engine.”
http://www.koders.com.

[9] Kremer, Ulrich. “Face-Code” (written in C).

[10] Restom, Adel. “Visage.”
http://sourceforge.net/projects/visage-hci/.

[11] “SARANA - A Space Aware and Resource
Aware Dynamic Network Architecture.”
http://www.research.rutgers.edu/ũli/Sarana/.

[12] Spacek, Libor. “Face Recog-
nition Data.” 21 Jun 2007.
http://cswww.essex.ac.uk/mv/allfaces/index.html.

[13] Viola, Paul and Michael Jones. “Rapid Object
Detection using a Boosted Cascade of Simple
Features.”

[14] Wang, Yong. “Situation-Aware Optimizations
in Challenging Networks.” Princeton University,
Computer Science Department. Ph.D. disserta-
tion, August 2007.

10


