
Sample Sort using the Standard Template Adaptive Parallel Library

Jessie Berlin, Gabriel Tanase, Mauro Bianco, Lawrence Rauchwerger, and Nancy M. Amato

Parasol Lab, Dept. of Computer Science, Texas A&M University, College Station, TX 77843

{jberlin, gabrielt, bmm, rwerger, amato}@cs.tamu.edu

Abstract

The Standard Template Adaptive Parallel Library (stapl) is a parallel library designed to make developing
software that takes advantage of parallelism on multi-processor machines easier. Written to be a superset
of the Standard Template Library (stl) for C++, stapl is intended to be straightforward to use, efficient,
and portable. Since stapl’s core library consists of ISO Standard C++ components, it must provide the
ability to sort.

We present a parametrized Parallel Sample Sort algorithm, developed with stapl, that provides a choice in
the method of sampling, the over-sampling ratio, and the over-partitioning ratio. Unlike many other Sample
Sort algorithms, it covers the situation where the load on each processor is not balanced at the beginning of
the algorithm without requiring an initial re-balancing step. In addition, we evaluate the general scalability
and the conditions under which two versions of the parametrized Parallel Sample Sort algorithm perform
well and poorly.

This research was supported in part by the Computing Research Association CRA-W Distributed Mentor Program

“Sample Sort ...”, Berlin et al. TR07-002, Parasol Lab, Texas A&M, Spring 2007 1

1 Introduction

Putting items in order is an important task in Com-
puter Science. Hence, sorting is one of the most stud-
ied topics in field. Sorting has computational com-
plexity O(n log n), and much research has been done
to speed up sorting by using multiple processors. The
emergence of multi-processor machines into the gen-
eral market has given added importance to the pur-
suit of fast and efficient parallel sorting algorithms.

We analyze a version of the well known parallel
sorting algorithm called Sample Sort. The general
idea behind Sample Sort is to break down the work
among multiple processors and have each processor
sort its portion of the data.

There are three basic steps in the general Sample
Sort Algorithm:

1. Find splitters, values that break up the data into
buckets, by sampling the local data on each pro-
cessor.

2. Use the sorted splitters to define buckets on the
different processors and place the data in the ap-
propriate buckets.

3. Sort each of the buckets.

We implemented the parametrized Parallel Sam-
ple Sort using stapl (Standard Template Adaptive
Parallel Library) [1], a superset of the stl (Standard
Template Library) for C++ that is designed to make
programming for parallel machines simpler.

In this paper, we discuss previous research on Sam-
ple Sort (Section 2), provide an overview of stapl

(Section 3), explain the details and implementation
of the parametrized Parallel Sample Sort (Section 4),
examine the experimental data (Section 5), review
the conclusions drawn from the results (Section 6),
and outline future work (Section 7).

2 Related Work

Finding the most efficient version of Sample Sort is
an often studied problem. Though there has been
little variation in the basic steps of the algorithm,
many different approaches in the implementation of

these steps have been developed in order to improve
the running time and the load balance.

In order to achieve good load balance, Shi and Sha-
effer [7] use Regular Sampling to pick their splitters.
The local data on each processor is sorted and p − 1
samples, where p is the number of processors, are
picked, evenly spaced, from each processor. Next,
p(p − 1) samples are sorted. Finally, p − 1 splitters
are picked, evenly spaced, from the samples. Thus,
the improvement in load balance is achieved by al-
lowing the first step of selecting the splitters to be
O(n log n/p), where n is the number of data elements
in the input. The parametrized Parallel Sample Sort
Parallel Sample Sort also utilizes Regular Sampling,
but does not sort the data on each processor before
picking the splitters.

Blelloch et. al [2] partition each processor’s n/p,
elements into s blocks of n/sp elements and take one
element, chosen randomly, from each block to form
the samples. They also use Regular Sampling to pick
the splitters from the samples. They prove that the
probability is high that the ratio of the maximum
bucket size to the average bucket size before the final
sorting step is small. However, they also start com-
pletely from scratch, picking new samples, if any one
of the buckets is too big.

Li and Sevcik’s method, Parallel Sorting by Over
Partitioning (PSOP) [4], involves picking pk−1 split-
ters, where k is the over partitioning ratio. It creates
pk buckets in order to ensure that the maximum size
of any bucket is small enough to result in good load
balancing. The parametrized Parallel Sample Sort
offers the user the option of over partitioning, but,
unlike PSOP, does not sort the buckets on each pro-
cessor in the order of decreasing size.

3 STAPL Overview

stapl is designed to be a parallel superset of the
Standard Template library (stl). It provides a set of
C++ parallel container classes and parallel template
algorithms that can be combined to provide different
functionality. stapl makes it easier for the program-
mer accustomed to C++ to program for distributed
parallel machines, being C++ based.

“Sample Sort ...”, Berlin et al. TR07-002, Parasol Lab, Texas A&M, Spring 2007 2

User Application Code

pAlgorithms

pRange

Run-time System

Pthreads
 MPI
OpenMP
 Native

Ad
ap

tiv
e

Fr
am

ew
or

k

Scheduler
 Executor
 Performance

Monitor

ARMI Communication

 Library

pContainers

Views

Figure 1: STAPL Infrastructure

stapl consists of a set of components that include
pContainers, pAlgorithms, views, pRanges, and a
runtime system (see Figure 1).
pContainers, the distributed counterpart of stl

containers, are thread-safe, concurrent objects, i.e.,
shared objects that provide parallel methods that can
be invoked concurrently. While all pContainers pro-
vide sequentially equivalent interfaces that are com-
patible with the corresponding stl methods, individ-
ual pContainers may introduce additional methods
to exploit the performance offered by parallelism and
by the runtime system.
pContainer data can be accessed using views

which can be seen as generalizations of stl iterators
that represent sets of data elements and are not re-
lated to the data’s physical location. views provide
iterators to access single elements of pContainers.
Generic parallel algorithms (pAlgorithms) are writ-
ten in terms of views, similar to how stl algo-
rithms are written in terms of iterators. A view

can have subviews, views over smaller portions of the
pContainer.

The pRange is the stapl concept used to represent
a parallel computation. Intuitively, a pRange is a task
graph, where each task consists of a work function
and a view representing the data on which the work
function will be applied. The pRange provides sup-
port for specifying data dependencies between tasks
that will be enforced during execution.

The runtime system (RTS) and its communication
library ARMI (Adaptive Remote Method Invocation
[6]) provide the interface to the underlying operat-
ing system, native communication library and hard-

ware architecture. ARMI uses the remote method
invocation (RMI) communication abstraction to hide
the lower level implementations (e.g., MPI, OpenMP,
etc.). A remote method invocation in stapl can be
blocking (sync rmi) or non-blocking (async rmi).

4 Parametrized Parallel Sam-

ple Sort

Before explaining how the parametrized Parallel
Sample Sort works, it is important to define how a
few terms are used:

Threads are processors. The number of threads
is denoted by t. It is assumed that there is a one-
to-one ratio between the number of subviews and the
number of threads, and that the input is distributed
approximately evenly across the threads, though it
is possible for there to be a greater or lesser number
of subviews than threads. Also, the parametrized
Parallel Sample Sort can handle the case where the
data is not evenly distributed across the threads, such
as the case where one or more threads may have zero
data elements.

Buckets are stapl subviews. The number of
buckets is denoted by j. The over partitioning ratio
k defines the integer number of buckets per thread,
such that j = tk.

Samples are values drawn from the data set in
order to provide a good representation of the distri-
bution of the data. The over sampling ratio s defines
the desired number of samples to be selected from
each thread, for a total number of samples ts. If a
thread has less than s local data elements to con-
tribute as samples, it contributes all if its local data
elements as samples.

Splitters are the j − 1 values drawn from the
sorted samples that define the j buckets such that
every data element in bucket i is less than splitter i,
for every i < j.

The parametrized Parallel Sample Sort (Figure 2)
consists of four main steps:

1. Sample the local data on each thread and sort
the samples.

2. Select splitters from the samples.

“Sample Sort ...”, Berlin et al. TR07-002, Parasol Lab, Texas A&M, Spring 2007 3

1 sample_sort(N,T,S,K){

2 globally, create the p_array of samples(view_data, TS, p_min_max_element(view_data))

3 locally, select s samples from each subview’s data using the sampling method

4 globally, sort the samples

5 globally, create the p_array of splitters(TK-1)

6 globally, select TK-1 splitters from the samples

7 step = (samples.size()- p_count(view_data, p_min_max_element(view_data)))/ TK

8 for(i = 0; i < TK-1; i++) {

9 samples_iterator+=step;

10 *splitters_iterator=*samples_iterator;

11 splitters_iterator++;

12 }

13 p_n_partition(view_data, view_splitters);

14 globally, redistribute the buckets (redistribute version only)

15 create a temporary pContainer aligned with the view over the original pContainer

16 p_copy(view_data, view_temporary);

17 locally, sort each bucket (of the view_temporary - redistribute version only)

18 p_copy(view_temporary, view_data); (redistribute version only)

19 }

Figure 2: Pseudo-code of the parametrized Parallel Sample Sort. N is the size of the input, T is the number
of threads, S is the over sampling ratio, and K is the over partitioning ratio

3. Use the sorted splitters to define buckets on the
different threads and place the data in the ap-
propriate buckets.

4. Sort each of the buckets.

4.1 Sampling the Data

The parametrized Parallel Sample Sort allows the
user to define the over sampling ratio s. If the user
does not provide an over sampling ratio, a default of
128 is used.

The parametrized Parallel Sample Sort creates a
pArray of samples of size ts. Each element in the
pArray of samples is initialized to value of the maxi-
mum element found in the original data set.

The parametrized Parallel Sample Sort also allows
the user to select the Sampling Method (Figure 3),
the method by which the samples are chosen from
the local data on each thread. The options for the
Sampling Method are as follows:

1. Even (default) - pick evenly spaced samples us-
ing a step of l/s, where l is the number of ele-
ments on the thread.

2. Semi-Random - pick approximately evenly
spaced samples using a step of a random number
between 1 and l/s.

3. Random - pick the samples randomly from the
data on the thread.

4. Block - pick the sequential first s data elements
on the thread.

In the case where a thread has fewer local data
elements than s, it contributes all of its local data
elements as samples.

Locally, each of the threads chooses s samples us-
ing the chosen Sampling Method and places them in
the corresponding part of the aligned pArray of sam-
ples. If a thread has less than s elements, it places all
its elements in the corresponding part of the aligned
pArray of samples.

The samples are then sorted globally.

“Sample Sort ...”, Berlin et al. TR07-002, Parasol Lab, Texas A&M, Spring 2007 4

4.2 Selecting the Splitters

Before selecting the splitters, the parametrized Paral-
lel Sample Sort counts the number of times the max-
imum element appears in the samples and subtracts
that number from the size of the pArray of samples,
to find the number of actual samples a.

This prevents the selection of the maximum value
as a splitter. If the maximum value was chosen as a
splitter, it would create an empty bucket since there
would be no data elements with values greater than
the splitter to place in the bucket.

The ideal is to pick splitters that separate the data
into j buckets of size n/j in order to achieve load
balancing. Load balancing means that every bucket
is equal in size, so that no one bucket takes longer
than any other bucket to be sorted.

The splitters are chosen using Regular Sampling
[7] from the samples by stepping through the actual
sorted samples using a step of size a/j, such that
the splitters are values at the a/jth, 2a/jth, ..., (j −
1)a/jth positions in the pArray of samples.

4.3 Partitioning the Data

In order to create buckets defined by the split-
ters and place the data elements in the correct
buckets, the parametrized Parallel Sample Sort uses
p n partition.
p n partition is a parallel algorithm in stapl

that takes a view over the data and a view over the
j − 1 splitters and creates j buckets, or to be more
exact subviews, such that each element in bucket i is
less than splitter i, for all i < j. The elements in the
jth bucket are greater than the ith splitter.

Because sending the elements to their correct
buckets is done in p n partition the call to
p n partition is the most expensive step of the
parametrized Parallel Sample Sort, since it involves
a large amount of communication among threads.

Due to the fact that the subviews that result from
the call to p n partition may no longer be aligned
with the underlying pContainer, some of the data ele-
ments in a few of the buckets will be remote, residing
in different locations than the bucket. When these
buckets are to be sorted, this proves to be problem-

atic, since accessing remote data elements is expen-
sive, requiring both read and write communication
between threads.

Therefore, one version of the parametrized Parallel
Sample Sort has a redistribution step following the
call to p n partition. This involves creating a new
pContainer aligned to the view that resulted from
p n partition, copying the data from the view that
resulted from p n partition into a view over that
pContainer, and sorting the buckets, or subviews to
be more exact, of the new pContainer.

The experimental results for tests run with sec-
ond version of the parametrized Parallel Sample Sort,
without redistribution, may also be found in Section
5.

4.4 Sorting the Buckets

Each thread sorts its buckets using a sequential sort.
For the version of the parametrized Parallel Sam-

ple Sort with redistribution, there is one final step of
copying the view of the temporary pContainer back
into the view over the original data elements.

Due to the nature of views, there is no need for
a final merge step, where the buckets are placed in
order. Since the buckets are subviews, with distinct
order within the view, and the buckets are defined
based on sorted splitters, the buckets are already in
order and the sort is complete.

5 Experimental Results

The parametrized Parallel Sample Sort allows for
variation in three main parameters: the over sam-
pling ratio, the sampling method, and the over parti-
tioning ratio. We tested different over sampling ratios
and different over partitioning ratios, as well as the
general scalability.

5.1 Architecture Used

We evaluated the performance of the parametrized
Parallel Sample Sort on a 640-processor IBM Cluster
system. There are 40 p575 nodes, each containing 8
dual core IBM 1.9GHx Power5+ chips, and each has

“Sample Sort ...”, Berlin et al. TR07-002, Parasol Lab, Texas A&M, Spring 2007 5

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 100 200 300 400 500 600

Bu
ck

et
 E

xp
an

sio
n

Over Sampling Ratio

bucket expansion

(a) Bucket Expansion

 0

 5

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500 600

Ex
ec

ut
io

n
Ti

m
es

 (s
ec

)

Over Sampling Ratio

sort samples phase
sort buckets phase

Total time

(b) Execution Times

Figure 4: Bucket expansion (a) and execution times (b) for an input of 32 million random integers with an
over-partitioning ratio of 1 as the over-sampling ratio is varied from 1 to 512.

a shared memory of 32GB. The nodes are connected
together by IBM High-Performance Switches (HPS).
We used GNU GCC v4.1.1 and its corresponding stl

implementation.

5.2 Over Sampling

When sampling the data, the goal is to get a good
representation of the distribution of the data ele-
ments. That way, the splitters have a high chance
of dividing the data into roughly equal sized buck-
ets, resulting in no bucket taking much longer than
any other bucket to sort in the last step of the
parametrized Parallel Sample Sort.

The over sampling ratio determines how many data
elements to pull from each thread as samples. In
cases where the data values are widely distributed,
such that there are not many duplicates of a value
grouped together, it may not be necessary to take
many samples from each thread to get values that
represent the variation of values in the data set. In
such a case, the over sampling ratio would not need
to be very large.

In cases where there are many duplicates or the
data elements are very close in value, it might be nec-
essary to take more samples from each thread in or-
der to get a good representation of the data. It would
therefore be necessary to use a larger over sampling
ratio.

It is also important to note the samples are sorted
with a sequential sort before the splitters can be cho-
sen. Higher over sampling ratios lead to longer times
for the sorting samples step since number of samples
to sort is equal to the over sampling ratio multiplied
by the number of threads. This must be taken into
consideration when using a higher over sampling ra-
tio.

One way of measuring the effect of the oversam-
pling ratio is to measure bucket expansion. Bucket
expansion is ratio of the largest bucket to n/j after
p n partition. The ideal splitters would partition
the data into j buckets of size n/j, which would re-
sult in a bucket expansion of 1 and would mean that
no one bucket is taking longer to sort than any other
bucket. A high bucket expansion means that the
splitters were poorly chosen, creating at least one dis-
proportionately big bucket that takes longer to sort
than the other buckets and results in a longer sorting
time.

Figure 4 shows the bucket expansion (a) and the to-
tal execution times (b) for the parametrized Parallel
Sample Sort run with different over sampling ratios
from 1 to 512. For an input of 32 million random
integers, generated with the same seed, a constant
over partitioning ratio of 1, and 16 processors, the
bucket expansion decreases as the over sampling ra-
tio increases, starting to level off at 128.

The total time for the parametrized Parallel Sam-

“Sample Sort ...”, Berlin et al. TR07-002, Parasol Lab, Texas A&M, Spring 2007 6

ple Sort decreases as the the bucket expansion ratio
is increased until in reaches 128, then increases as
the bucket expansion rate is further increased. This
is due to the increase in time for the sort samples
phase as the over sampling ratio is increased. The
sort buckets phase also begins to level off at an over
sampling ratio of 128. Thus, 128 is the default for
the over sampling ratio that we use the later tests.

5.3 Sampling Method

We tested the four Sampling Methods that the
parametrized Parallel Sample Sort offers in order to
determine if different Sampling Methods worked bet-
ter or worse when sorting various data inputs. The
four types of inputs we tested were Random 32 bit
integers, integers generated using the rand() func-
tion, Duplicates 1, integers generated using rand()
mod100000, Duplicates 2, integers generated using
rand() mod100, and Sorted, where the data on each
processor is initially sorted.

Tables 1 and 2 show the results for the total times
for two different sets of runs, both sets of runs on
16 processors and with 16 million data elements, but
with different seeds for the rand() function. Tables 3
and 4 show the results for the bucket expansions for
the two sets of runs.

Even Semi-Rand Rand Block

R 21.4667 22.0424 20.9867 19.4635
D1 21.695 21.9043 20.9742 20.0872
D2 22.6771 23.1119 23.5013 24.1623
S 18.5255 88.0982 170.127 170.42

Table 1: Sampling Method: Total Time, seed = 1

Even Semi-Rand Rand Block

R 20.0655 20.4415 20.1627 21.4645
D1 20.3001 20.0067 19.823 21.2529
D2 20.9006 20.7069 20.916 21.5928
S 18.3416 86.9277 173.297 170.544

Table 2: Sampling Method: Total Time, seed = 2

Tables 1 and 2 show that the best total running
time for the Random 32 bit integers data for the first
seed occurs with the blocked Sampling Method, but

Even Semi-Rand Rand Block

R 1.11623 1.1327 1.15027 1.14967
D1 1.11623 1.12752 1.15152 1.14967
D2 1.12056 1.28013 1.3853 1.43847
S 1.12493 8.75658 15.7534 15.999

Table 3: Sampling Method: Bucket Expansion, seed = 1

Even Semi-Rand Rand Block

R 1.20558 1.16455 1.16091 1.12941
D1 1.20558 1.19115 1.19454 1.12941
D2 1.27857 1.22625 1.27857 1.27857
S 1.12493 8.55824 15.7541 15.999

Table 4: Sampling Method: Bucket Expansion, seed = 2

for the second seed occurs with the even Sampling
Method. For the Duplicates 1 data, the best time
with the first seed also occurs with the blocked Sam-
pling Method, but with the second seed occurs with
the random Sampling Method. For the Duplicates 2
data, the best time with the first seed occurs with
the even Sampling Method, but with the second seed
occurs with the semi-random Sampling Method. For
the Sorted data, the best times for both seeds occur
with the even Sampling Method.

The same lack of a clear trend to indicate the best
Sampling Method for a given data input is evident in
the bucket expansions. For all four data inputs us-
ing the first seed, the lowest bucket expansions occur
when the even Sampling Method is used. However,
when the second seed is used, the Duplicates 1 and 2
inputs incur the lowest bucket expansions when the
semi-random Sampling Method is used, but the Ran-
dom 32 bit integers input has the lowest bucket ex-
pansion when the blocked Sampling Method is used
and the Sorted input has the lowest bucket expansion
when the even Sampling Method is used.

Due to the fact that huge jumps with the stapl it-
erators are costly because the data they iterate over
is not guaranteed to be stored sequentially in mem-
ory, the semi-random and random Sampling Meth-
ods take longer than the even and block Sampling
Methods. The block Sampling Method is the fastest.
However, we chose the default Sampling Method, and
the one used in later tests, to be the even Sampling

“Sample Sort ...”, Berlin et al. TR07-002, Parasol Lab, Texas A&M, Spring 2007 7

Method, since the block Sampling Method resulted in
worse total times for the Duplicates 2 and the Sorted
inputs.

5.4 Over Partitioning

The theory behind over partitioning is twofold. First
if the over partitioning ratio is increased and more
buckets are created, each thread should be running
k sequential sorts, where k is the over partitioning
ratio, then the complexity of the sorting step for
each thread should be O((n/p) log(n/pk)) instead of
O((n/p) log(n/p)) in the ideal case where the size of
the buckets are all equal.

However, the quicksort in the STL sort already
does this type of partitioning. Thus, there should
be little or no gain from a higher over partitioning
ratio in this sense.

The more important reason to over partition is the
fact that the subviews that result from the call to
p n partition are most likely not aligned with the
original pContainer. This means that some of the
subviews have remote elements. If a subview has a
large number of remote elements, the sorting step
will take significantly longer. By over partitioning,
the hope is that the smaller subviews will have fewer
remote elements and a higher chance of aligning with
the underlying pContainer.

5.4.1 Redistribution

Since redistribution eliminates the problem of having
the remote element access during the bucket sorting
phase, over partitioning should not result in signifi-
cant speedup for the version of the parametrized Par-
allel Sample Sort.

Figure 5 shows the effect of increasing the over
partitioning ratio for the version with redistribution.
The times remain relatively the same for the parti-
tion phase, the sort buckets phase, and the total time,
increasing slightly as the over partitioning ratio is in-
creased. For the redistribution phase, higher over
partitioning ratios lead to significantly longer times
for 16 or more processors.

Therefore, for the parametrized Parallel Sample
Sort with redistribution, the over partitioning ratio

should be low, and the default value used for later
tests is 1.

5.4.2 Without Redistribution

Figure 6 shows the effect of increasing the over parti-
tioning ratio for the version of the parametrized Par-
allel Sample Sort without redistribution.

As the over partitioning ratio is increased from 1 to
16, the times decrease until 64 processors is reached.
Over partitioning ratio 20 results in uniformly longer
times from 1 to 32 processors.

However, there is a visible jump, especially in the
times for over partitioning ratio 16, when it the
parametrized Parallel Sample sort without redistri-
bution reaches 64 processors. Running the same
tests, in which we averaged three runs with exactly
the same input of 1 million random elements gener-
ated with same seed, on 32 and 64 processors with
two different seeds produced widely different times.
For the second seed, 64 processors, and an over par-
titioning ratio of 16, the running time was 10.2483
seconds. For the third seed, 64 processors, and an
over partitioning ratio of 16, the running time was
77.9435 seconds.

This variation can be explained by the distribution
of local and remote elements throughout the buck-
ets. For the first seed, the over partitioning ratio of
16 resulted in 11,745 remote elements in one of the
buckets. For the second seed, the highest number
of remote elements in any of the buckets was 2,415
elements. The greater the amount of remote access
during sorting, the greater the amount of read com-
munication between the processors, and, therefore,
the longer sorting time.

For almost all of the runs, until the times get close
to 5 or fewer seconds, the dominant phase, as can be
seen in the graphs, is the sorting buckets phase. Be-
cause this sorting phase is almost entirely dependent
on the bucket with the most remote elements and the
distribution of the remote elements can vary widely
from one input distribution to another, the perfor-
mance of the parametrized Sample Sort without re-
distribution is not stable or necessarily predictable.

It is also important to note that the 11,1745 el-
ements in one bucket also means that, for the runs

“Sample Sort ...”, Berlin et al. TR07-002, Parasol Lab, Texas A&M, Spring 2007 8

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70

Ex
ec

ut
io

n
Ti

m
es

 (s
ec

)

Number of Processors

Partition Phase

1
2
3
4
5
8

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24

 0 10 20 30 40 50 60 70

Ex
ec

ut
io

n
Ti

m
es

 (s
ec

)

Number of Processors

Redistribution Phase

1
2
3
4
5
8

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 10 20 30 40 50 60 70

Ex
ec

ut
io

n
Ti

m
es

 (s
ec

)

Number of Processors

 Sort Buckets Phase

1
2
3
4
5
8

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 10 20 30 40 50 60 70

Ex
ec

ut
io

n
Ti

m
es

 (s
ec

)

Number of Processors

 Total Times

1
2
3
4
5
8

Figure 5: With Redistribution: Execution times for an input of 32 million random integers, with a
constant seed, for over partitioning ratios ranging from 1 to 8 as the number of processors are increased from
2 to 64.

“Sample Sort ...”, Berlin et al. TR07-002, Parasol Lab, Texas A&M, Spring 2007 9

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 0 10 20 30 40 50 60 70

Ex
ec

ut
io

n
Ti

m
es

 (s
ec

)

Number of Processors

Partition Phase

1
2
3
4
5
8

16
20

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 10 20 30 40 50 60 70

Ex
ec

ut
io

n
Ti

m
es

 (s
ec

)

Number of Processors

 Sort Buckets Phase

1
2
3
4
5
8

16
20

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 10 20 30 40 50 60 70

Ex
ec

ut
io

n
Ti

m
es

 (s
ec

)

Number of Processors

 Total Times

1
2
3
4
5
8

16
20

Figure 6: Without Redistribution: Execution times for an input of 32 million random integers, with a
constant seed, for over partitioning ratios ranging from 1 to 64 as the number of processors are increased
from 2 to 64.

“Sample Sort ...”, Berlin et al. TR07-002, Parasol Lab, Texas A&M, Spring 2007 10

with the first seed, a few of the splitters might have
been chosen poorly. The ideal bucket size should have
been 1000000/(64 ∗ 16) ≈ 977. Upon inspection of
the other bucket sizes, this was the case, with most
of them varying between 600 and 1200. Out of the
1024 splitters that had to be chosen from the 8192
samples, one or two splitters might have been poorly
chosen.

However, because over partitioning ratio 16 per-
formed well up until 64 processors in the first run
and performed well in one of the other runs discussed
above for 64 processors, 16 is used as the default over
partitioning ratio in the later tests.

5.5 Speedup

We measured the speedup for both of the versions of
the parametrized Parallel Sample Sort, with redistri-
bution and without redistribution.

5.5.1 Redistribution

Figure 7 shows that the sort buckets phase of the
parametrized Parallel Sample Sort with redistribu-
tion scales almost linearly, achieving super linear scal-
ing for all but one of the input sizes. However, it also
shows that the overall scalability of the algorithm is
poor, since the maximum speedup achieved is 5 by
the largest input size, 32000000 elements. This is
due to the poor scalability of the partition and redis-
tribution phases, which require a great deal of com-
munication between threads.

5.5.2 Without Redistribution

Figure 8 shows that the version without redistribu-
tion behaves erratically, with no clear trend of scal-
ability. This is probably due to the problem of the
distribution of the remote and local elements during
the sort buckets phase, as described in Section 5.4.2.

Unless some method is found to decrease the cost
of sorting remote data, use of the version of the
parametrized Parallel Sample Sort without redistri-
bution will result in unpredictable results.

6 Conclusion

In this paper we presented the parametrized Parallel
Sample Sort, a parallel sorting algorithm written us-
ing STAPL. We described the design and implemen-
tation of two versions of the algorithm, with redistri-
bution and without redistribution, and the parame-
ters which can be varied. Our experimental results on
an IBM P5 cluster show that the sort buckets phase
of the parametrized Parallel Sample Sort with redis-
tribution performs well with an over sampling ratio
of 128 and an over partitioning ratio of 1, but that
overall the parametrized Parallel Sample Sort with
redistribution shows poor scalability. We also showed
that the parametrized Parallel Sample Sort without
redistribution performs poorly and erratically.

7 Future Work

Future work will focus on improving the partition
and redistribution phases of the parametrized Par-
allel Sample Sort. If a method of reducing the cost
of remote communication can be found, both ver-
sions of the parametrized Parallel Sample Sort will
be re-evaluated. Also, iterator optimization may al-
low for some speedup in the sort buckets phase of the
parametrized Parallel Sample Sort without redistri-
bution.

In addition, the parametrized Parallel Sample Sort
may be incorporated into an adaptive parallel sorting
algorithm for the stapl library. In such an adaptive
parallel sorting algorithm, the parametrization could
be used to optimize performance based on the data
input.

Such a parallel sorting algorithm could then be
called during both the sort samples phase and the
sort buckets phase in place of the currently sequen-
tial sorts, which should result in a speedup for both
phases in both versions of the parametrized Parallel
Sample Sort.

References

[1] P. An, A. Jula, S. Rus, S. Saunders, T. Smith,
G. Tanase, N. Thomas, N. Amato, and L. Rauch-

“Sample Sort ...”, Berlin et al. TR07-002, Parasol Lab, Texas A&M, Spring 2007 11

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 10 20 30 40 50 60 70

Sp
ee

du
p

Number of Processors

Sort Buckets Phase

2000000
4000000
8000000

16000000
32000000

linear

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70

Sp
ee

du
p

Number of Processors

Totals

2000000
4000000
8000000

16000000
32000000

linear

Figure 7: With Redistribution: Speedup for the sort buckets phase and the entire sort for random integer
inputs, generated with a constant seed, of 2, 4, 8, 16, and 32 million elements as the number of processors
is increased from 2 to 64.

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70

Sp
ee

du
p

Number of Processors

Sort Buckets Phase

1000000
4000000
8000000

linear

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70

Sp
ee

du
p

Number of Processors

Totals

1000000
4000000
8000000

linear

Figure 8: Without Redistribution: Speedup for the sort buckets phase and the entire sort for random
integer inputs, generated with a constant seed, of 1, 4, and 8 million elements as the number of processors
is increased from 2 to 64.

werger. STAPL: A standard template adaptive
parallel C++ library. In Proc. of the Interna-
tional Workshop on Advanced Compiler Technol-
ogy for High Performance and Embedded Proces-
sors (IWACT), Bucharest, Romania, Jul 2001.

[2] G. E. Blelloch, C. E. Leiserson, B. M. Maggs,
C. G. Plaxton, S. J. Smith, and M. Zagha. An ex-
perimental analysis of parallel sorting algorithms.
Theory of Computing Systems, 31(2):135–167, /
1998.

[3] D. R. Helman, D. A. Bader, and J. JáJá. A ran-
domized parallel sorting algorithm with an exper-

imental study. Journal of Parallel and Distributed
Computing, 52(1):1–23, 1998.

[4] H. Li and K. C. Sevcik. Parallel sorting by over
partitioning. In ACM Symposium on Parallel Al-
gorithms and Architectures, pages 46–56, 1994.

[5] D. R. Musser and A. Saini. The STL Tutorial
and Reference Guide: C++ Programming with
the Standard Template Library. Addison Wes-
ley Longman Publishing Co., Inc., Redwood City,
CA, USA, 1995.

[6] S. Saunders and L. Rauchwerger. ARMI: An
adaptive, platform independent communication

“Sample Sort ...”, Berlin et al. TR07-002, Parasol Lab, Texas A&M, Spring 2007 12

library. In ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming
(PPoPP), San Diego, CA, June 2003.

[7] H. Shi and J. Schaeffer. Parallel Sorting by Regu-
lar Sampling. Journal of Parallel and Distributed
Computing, 14(4):361–372, 1992.

[8] N. Thomas, S. Saunders, T. Smith, G. Tanase,
and L. Rauchwerger. Armi: A high level com-
munication library for stapl. Parallel Processing
Letters, 16(2):261–280, Jun 2006.

1 sample_sort(N,T,S,K){

2

3 locally, select up to s samples from each subview

5 if (choice == "even"){

6 step = l-1/S;

7 for(i=0; i<S && data_iterator!=local_end; i++){

8 data_iterator+=step;

9 *samples_iterator = *data_iterator;

10 samples_iterator++;

11 }

12 }

13 if (choice =="semi-random"){

14 for(i=0; i<S && data_iterator!=local_end; i++){

15 random_step=rand()% l-1/S;

16 data_iterator+=random_step;

17 *samples_iterator=*data_iterator;

18 }

19 }

20 else if (choice =="random"){

21 for(i=0, i<S && data_iterator!=local_end; i++){

22 do{

23 step = rand()% l-1/S;

24 data_iterator=data_begin;

25 data_iterator+=step;

26 insert data_iterator into a set

27 }while(data_iterator is already in the set);

28 *samples_iterator=*data_iterator;

29 samples_iterator++;

30 }

31 }

32 else if (choice =="block"){

33 for(i=0; i<S && data_iterator!=local_end; i++){

34 *samples_iterator=*data_iterator;

35 samples_iterator++;

36 data_iterator++;

37 }

38 }

39

40 }//end sample sort

Figure 3: Pseudo-code of the parametrized Parallel
Sample Sort sampling step. N is the size of the input,
T is the number of threads, S is the over sampling
ratio, K is the over partitioning ratio, and l is the
number of elements on the thread.

