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Abstract

Crystallographers synthesize proteins to be used
in pharmacological processes. Synthesizing crys-
tals requires experiments in which different pre-
cipitates are mixed and stored under varying
temperature and pressure conditions. Robot mi-
croscopes are used to take pictures of the com-
pleted experiment. Using an existing automated
protein crystallization classifier as benchmark,
we explored the effects of extracting different tex-
ture features and using a different classifying al-
gorithm. In section 2 we give a brief overview
of the Pan et al method for feature extraction.
In section 3 we discuss the features we extracted.
Section 4 talks about the classifiers used, and sec-
tion 5 explores our results.

1 Introduction

Viruses such as Malaria are like keys that fit into
our body’s key holes. If the keyholes are blocked,
then Malaria will not be successful in attaching
to vital systems. In a sense, protein crystallog-
raphy aim at artificially creating key-hole plugs.
The idea is that if a crystal’s structure is a bet-
ter fit for the receptor keyhole in our body than
Malaria, it will effectively block Malaria from

reaching its intended destination. This process
is not just used for Malaria, but in many other
pharmacological processes that save many lives.

Protein crystallization is the process of grow-
ing crystals by mixing precipitate at various tem-
peratures, pressures, and reaction times. At the
end of the reaction time a robot microscope takes
a digital picture of the result obtained from that
experiment. The digital pictures must then be
classified as either crystal or not crystal [8]. As
we can see from figures 1,2, and 3, even expert
human eyes have can have a hard time identi-
fying crystals from no-crystals. Figure one is a
very good batch of micro crystals ready to be
harvested and taken to a laser line for structure
identification. Figure 2 shows what looks like
microcrystals but in fact are impurities, bubbles
and precipitate. Figure 3 shows an image of crys-
tals mixed within nebulous precipitate residue.

Pan et al [11] discovered that classifying crys-
tals in ’textured’ areas is the biggest challenge
that a classification system much surmount. We
explore extracting textured features based on
the co-occurrence matrix which have been found
to outperform Gabor features in recognizing
objects in ’noisy’ (textured) backgrounds [12].
Once we had developed our features, we found a
way to differentiate ’texture’ from ’non-textured’
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areas with 96% accuracy.

Figure 1: Crystals in ’untextured’ background–
precipitate.

2 Background

Previous work carried out by Pan et al [11]
extracted Blobworld texture features combined
with Gabor wavelet decomposition results in a
Support Vector Machine (SVM) classifier.

2.1 Blobworld Texture Features

Blobworld is a system for image retrieval based
on finding coherent image regions which roughly
correspond to objects. Each image is segmented
into regions called “blobs” with associated tex-
ture descriptions [4].

Because computing texture features at the
wrong scale would lead to confusion, Edge Polar-
ity was chosen as one of the Blob World texture
measures. Polarity is a measure of the extent to

Figure 2: Texture–precipitate, bubbles, inpuri-
ties, only. No Crystals.

which the gradient vectors in a certain neighbor-
hood all point in the same direction. This has a
stabilizing effect since the polarity is calculated
at every pixel of the image at various scales, later
smoothed with a Gaussian filter [7].

Anisotropy was chosen as a texture measure
because it would reflect different properties ac-
cording to the direction of measurement, and
would hence, make it sensitive to both textured
and untextured areas in the image blocks [7].

The last feature chosen was the Texture Con-
trast which defines the homogeneity of the pixels
within the local region. There should be Crystal
high Contrast insidide crystal regions, signaling
a homogenous area.

2.2 Gabor Wavelet Decomposition

Gabor wavelets are complex exponential sig-
nals modulated by Gaussians. Two properties
were taken into account when choosing Gabor
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Figure 3: Crystals in a ’textured’ background.

wavelets: good edge localization and the ab-
sence of image dependent parameter tuning [6].
The only Gabor feature used is the response,
computed by assigning each pixel (x, y) an 8-
component vector H(x, y) response as in equa-
tion 1.

response(x, y) = 0.5 +
arctan( (|H(x,y)|−|H|)

|H̃|
)

π
(1)

2.3 Support Vector Machines

Support Vector Machines (SVM) are binary clas-
sifiers. Given a training data set of n sub-
jects, an SVM aims at finding a maximum-
margin hyperplane or optimal hyperplane, ob-
tained by mapping a feature vector into a very
high-dimensional space and cutting it in half[3].
Often, points in a hyperplane are not readily lin-
early separable. In those cases a kernel function

is used to map the hyperspace, or kernel space,
into that is linearly separable. Figure (1) shows
a hyperspace that we separated using a kernel
function[3].

Figure 4: Given a set of points representing in-
puts, SVMs find an optimal separation to classify
inputs as belonging to one of two classes.

Figure 5: Kernel functions map points not lin-
early separable into a linearly separable arrange-
ment before the hyperplane is divided. Each
point in the hyperplane represents an input im-
age as represented by a feature vector.

After segmenting the image into 40 by 40 pixel
windows with a 20 pixel vertical and horizontal
overlap, a numeric feature vector was computed
for each image block being analyzed, which we
then used to train the SVM classifier. Images
are classified as containing crystals if one of its
blocks is classified as positive by the SVM[11].

3 Feature Extraction

The theory we based our work in revolved
around the idea of extracting texture measures
from an input image in order to classify the im-
age or portions of interest within the image as
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textured or not textured. Crystals, we believe
are found in low or no texture areas. Further-
more, the space inside the crystals should be un-
textured. To reach our goal, we would have e to
combine textural feature extraction with an edge
detecting algorithm whose output would be used
to identify candidate crystal areas through a
method of finding connected segments and their
associated convex hulls.

3.1 Co-Occurrence Based Features

A Co-occurrence Matrix is a two-dimensional ar-
ray C whose elements represent the joint proba-
bility that two image pixels that are neighbors in
the direction θ at a distance d have gray values
equal to i and j [14]. The co-occurrence matrix
Cd is calculated by:

Cd[i, j] = |{[r, c]|I[r, c] = iandI[r+dr, c+dc] = j}|,
(2)

where (dr,dc) is a displacement vector, and I
is the image being analyzed. The contributions
of the matrices in different directions (textural
orientations) can be summed up in a unique ma-
trix [13]:

Pd(i, j) =
1

||S||

∑

θ∈S

Cθ,d(i, j), (3)

where S = {0, 45, 90, 135}. The resultant matrix
Pd(i, j) exploits the local distribution of inten-
sity values of the input image in a similar fashion
as the Polarity of the Blob World texture does.
The difference is that the co-occurrence matrix
bypasses the problem of relying on gradient de-
rived computations.

Just as the Anisotropy was normalized before,
we normalize our co-occurrence matrix so that

the values of the matrix lie between 0 and 1, al-
lowing them to be thought of as probabilities in a
larger matrix. The difference is that unlike with
Anisotropy of the blobworld features, employing
the co-occurrence matrix we can have more pa-
rameters to feed to our classifying algorithm[14].
The normalized gray-tone co-occurrence matrix
Nd is obtained by

Nd[i, j] =
Pd[i, j]∑

i

∑
j Pd[i, j]

(4)

From the normalized co-occurrence matrix we
can calculate five numeric features that can be
used to represent the texture more compactly
and allows us comparing two textures.

The first of the texture measures that I ex-
tracted was the Energy [14]. Energy, also called
Angular Second Moment, is a measure of the
uniformity of an image. Texture inside crystals
should be homogeneous, which would correlate
to large values for the energy measure since a
homogeneous image contains very few dominant
gray tone transitions.

Energy =
∑

i

∑

j

N2
d [i, j] (5)

Entropy measure the disorder of an image[5].
Entropy is very large when the image is not very
texturally uniform, Hence, Entropy inside crys-
tals is expected to be very low, since that would
signal no drastic gray tone transitions.

Entropy = −
∑

i

∑

j

Nd[i, j]log2Nd[i, j] (6)

Contrast is a weighted texture measure, the
squared term being the weighted part. Weights
increase away from the diagonal, since diagonal
values show no contrast. Contrast indicates the
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level of local variability or smoothness and is
larger for images with quickly varying intensi-
ties, such as edges of crystals or fuzzy textured
images. Algebraically, it is represented by[14]:

Contrast =
∑

i

∑

j

(i − j)2Nd[i, j] (7)

Homogeneity will be large for images with con-
stant or near constant patches. It is the inverse
of the contrast since the weights decrease away
from the diagonal. Crystal images should have
constant patches (representing crystals or crys-
tal portions), hence we are interested in images
with high homogeneity values. Homogeneity is
obtained with the following formula[14][5],

Homogeneity =
∑

i

∑

j

Nd[i, j]

1 + |i − j|
(8)

The Correlation measures the linear depen-
dency among neighboring pixels. It gives a mea-
sure of abrupt transitions. Values at which cor-
relation values decline suddenly may be taken
as one definition of the size of definable objects
within an image, such as the edge of a crystal
or the presence of several objects in an image.
The correlation is a weighted statistical measure
obtained by[14]:

Correlation =

∑
i

∑
j(i − µi)(j − µj)Nd[i, j]

σiσj

(9)

where

µi =

Ng∑

i=1

i

Ng∑

j=1

P (i, j), (10)

µj =

Ng∑

j=1

j

Ng∑

i=1

P (i, j), (11)

σ2
i =

Ng∑

i=1

(i − µi)
2

Ng∑

j=1

P (i, j), (12)

σ2
j =

Ng∑

j=1

(j − µj)
2

Ng∑

i=1

P (i, j) (13)

3.2 Edge Detection Based Features

Edge detection was carried out using a Canny
edge detection filter because Canny is especially
good when applied to images that naturally have
sharp straight lines[]Shapiro, such as is the case
with crystals. The Canny operator works in a
multi-step process. First, it convolves the image
using a Gaussian smoothing mask of scale sigma.
This gets rid of background noise; the larger the
value of sigma the more information is ignored.
In our experiment, a sigma of 2 was optimal,
since a larger value got rid of too much informa-
tion, and a smaller value introduced too much
superfluous information. Table 1 shows the ac-
curacy obtained with different sigma values[14].

After the smoothing phase is completed, the
gradient magnitude and direction are computed.
Edges give rise to ridges in the gradient mag-
nitude image. The algorithm tracks along the
top of these ridges and sets to zero all pixels
that are not actually in the ridge top so as to
give a thin line output, a process known as non-
maximal suppression. Lastly, in a process that
combines thresholding and hysteresis, the algo-
rithm uses an upper threshold to find the start
of a line, it then traces the edge’s path through
the image pixel by pixel, making an edge while
the pixel values stay above a low threshold[14].

Three parameters affect the performance of
the Canny operator, the width of the Gaussian
used in the smoothing phase, and the upper and
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lower thresholds used by the tracker[14]. Early
trials suggested an upper threshold of 0.38 ob-
tained by testing systematically improvements
in edge detection. Ultimately we chose to utilize
an automatic threshold detecting function whose
results were slightly improvements on our man-
ual observation.
Classifier Sigma Detected Crystals

Decision Tree 1 36.4%

Neural Network 1 52.7%

Decision Tree 2 41.8%

Neural Network 2 47.3%

Decision Tree 3 38.1%

Neural Network 3 51.8%
Table 1. Correctly classified crystals using
different Gaussian masks.

Once the edges have been identified, the con-
nected segments are found and the convex hulls
computed. The convex hulls are enclosing con-
vex polygons that enclose a number of connected
segments. If a single segment or segments in a
straight line are found in the image, we cannot
create any polygon around them. Since the clas-
sification takes place n small windows, it is pos-
sible that a portion of a crystal edge is found in
our block only. Though we cannot compute an
associated area for this instance, we can cata-
logue the crystal as containing edges. Figure 2
shows a Canny filter applied to a crystal image.

4 Classifiers

An off the shelf WEKA Machine Learning Java
Classifier Suit was used. Neural network al-
gorithms were compared to Meta Classifiers
for effectiveness. The Waikato Environment
for Knowledge Analysis (WEKA) is a suit of
Java libraries that implement many learning and
data mining algorithms[9]. It comes with tools

for pre-processing data, feeding it to learning
schemes, and analyzing the resulting classifiers
and their performance. In our study the neural
networks classifier consistently outperformed the
decision tree classifiers tested.

4.1 Neural Networks

Neural Networks are non-linear modeling tech-
niques that have proved effective in the classi-
fication of noisy data, in particular, unlike with
Meta classifiers, over-fitting problems are greatly
reduced. Over fitting is when the classifier per-
forms better on the trained images than on an
unknown set of imaages, while a second classi-
fier performs better with an unknown set of data
than with the training data. In a sense, it occurs
when the classifier has memorized all the answers
to its training questions but has not learned how
to figure the problems themselves[10].

Neural networks can be applied to either su-
pervised or supervised classification. The basic
unit of a Neural Network is a perceptron. A per-
ceptron is an attempt to model animal neurons.
The way perceptrons work is by giving weights
to different inputs, optimized through training,
and setting a crossholding value, again optimized
through training. If the combination of inputs
and their weights is above the threshold, then
the perceptron responds with a yes, otherwise,
it returns a no[10]. Figure 1 shows a perceptron
schematic.

Multi Layer Networks consist of inputs plus
one or more hidden layers which are simultane-
ously the output of the input and the input of the
next layer. Figure 2 shows the basic schematic of
a multi Layer Neural Network with one hidden
layer[10].

The primary neural network we employed was
the supervised non-linear Multi Layer Percep-
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Figure 6: Perceptron.

Figure 7: Neural Network.

tion, ideal for a binary class such as ours, using
a cross validation method with one hidden layer
and Back propagation for active learning. Back
propagation is a method of training whereby the
answer to a problem is given to the classifier and
it learns by working backward to the previous
layer to get to the input which is also known.
Ideally it learns the optimal weights to solve
problems correctly. The number of nodes in the
hidden layer corresponds to the number of fea-
tures being used in classification[10]. The results
of the classification are evaluated via a confu-
sion matrix. The confusion matrix tells us the
number of instances classified correctly and in-
correctly for each class.

4.2 Meta Classifiers

Meta Classifiers are classifiers that use the out-
put of other classifiers as their input[15]. The
Meta classifier we used was Decorate with bag-
ging. Diverse Ensemble Creation by Opposi-

tional Re-labeling of Artificial Training Exam-
ples (Decorate) builds an ensemble of different
classifiers that provide effective diverse commit-
tees. The classifiers learn both on the sample
data as well as artificially created data. Artificial
data is generated by picking random points that
appear within the Gaussian distribution of the
training data. The probability of these points is
computed and used as one f the attributes of the
learning process.

Decorate with querying by bagging has been
shown to be optimal in building committees for
active learning[1]. Bagging is a method for gen-
erating multiple versions of a predictor and using
those in turn to generate aggregate predictors[2].
The aggregation does a plurality vote when pre-
dicting a class. Each of the classifiers is given a
number of votes depending on their accuracy, the
votes are added and compared against a thresh-
old, if the votes are above the threshold, then the
outcome is positive (image classified as crystal).
In our experiments over fitting made the meta
classifier consistently under perform the neural
network classifiers.

5 Results and Discussion

Feature extraction is one part in a larger system
that classifies images as crystals or non-crystals.
Feature extraction alone does not yield the 2.9

However, we did discover that we can elimi-
nate images with low contrast values. Such im-
ages correlate to empty images. Table 2 shows
the number of images properly discriminated
with different contrast values. This is akin to
the elimination of ’bad moves’ in an A.I. chess
player. A.I. chess players build decision trees
several layers deep. To optimally allocate mem-
ory resources, algorithms that choose not to ex-
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pand branches of trees that are ’obvious bad
moves’ are in place. Such moves are not just
moves that end in losing the game, but moves
that humans automatically discard such as los-
ing a higher ranked piece in exchange for a lower
ranked piece. Analogously, a human classify-
ing images automatically discards empty images,
setting a low threshold for the contrast correlates
to discarding empty images and has proven in
our work an early yet effective way to minimize
the number of images that must be classified.
Finding the appropriate thresholds for ’obvious’
no crystal images is an important step in op-
timizing a full classifier system. Hence more re-
sources can be allocated to the task of discerning
crystals in heavily textured areas, a task which
remains difficult.
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