
Detecting Define-Use Bugs On Multithreaded Programs

Rebecca Shapiro (Undergraduate, Wellesley College), Shan Lu (Graduate Mentor, UIUC),
Yuanyuan Zhou (Faculty Mentor, UIUC)

Abstract

As dual core processors that take advantage of multi-
threaded programs become more popular it becomes
important to be able to produce programs free from
concurrency and other types of bugs. Concurrency bug
detection is extremely difficult, thus it is important to
know what types of concurrency bugs are common in
real world applications so we can address these prob-
lems efficiently. We have found that automicity viola-
tions and ordering bugs are common and will be ad-
dressing how to detect ordering bugs.

1. Introduction
1.1. Motivation
Today, multithreaded programs are extremely pop-
ular. With the increase in popularity of multi core
technology, it is becoming extremely important to
distribute bug free multithreaded programs. Due to the
complexity of multithreaded programs, it is difficult to
guarantee their correctness. Therefore, it is important
to be able to provide programmers with tools to help
them test and debug their applications.

Synchronization bugs can cause a good deal of
damage. For example, the great blackout in the
northeast of the United States in 2003 that caused tens
of millions of people to lose power was initiated by a
concurrency bug. [5]

1.2. Previous Work
Concurrency bug detection is an active area of re-
search with much on-going research occurring in this
area. Both static and dynamic methods have been used
in the past to detect data races. Previous concurrency
bug detectors use the Lockset algorithm, like Eraser,

the happens-before algorithm [3], or a combination of
the two [1]. The Lockset algorithm detects possible
concurrency bugs by keeping track of the locks and
memory accesses. The happensbefore method is an
algorithm that uses request queues to manage shared
resources.

The work that this research is based on, and is
extending, is AVIO. [4] AVIO detects automicity
violation bugs by statistically inferring which vari-
able accesses should be atomic. This approach is
extremely novel because it infers what regions of code
are assumed to be atomic by the programmers and it
uses this information to detect atomicity violations
that cause software bugs.

One problem that all race detectors encounter is
the trade-off between its bug exposing capability
and testing cost in terms of time and resources. It
is important that future work understand what types
of races happen in real world applications so that
researchers can make more informed decisions as to
how to approach problem of efficiently detecting most
or all bugs before software release

2. Bug Survey
Our work aims to survey the types of races that have
occurred in real applications such as Mozilla, MySQL,
KDE and Gnome. Because all of these programs are
developed by the open source community, we were
able to study bug reports for each of these programs.
By studying different types of software, we can
determine the best way to proceed and work to detect
the most common types of data race bugs.

Because our sample size was small for each piece
of software we studied, we cannot make any conclu-

1



sions about what type of data race bugs are prevalent
in which types of software. However, we were able to
use this information to get a overall sense of the types
of bugs that real world multitheraded software contain.

Through our study, we found two types of bugs
cropped up many times that haven’t been explored
much with previous race detection work including
AVIO. AVIO can infer which sections of code should
not have unseriable access interleavings for single
variables, but not for multi variables. Through our sur-
vey of bugs, we found that our accuracy will improve
if we can do the same for atomic sections containing
multiple variables. The second thing we found was
that many of the bugs occurred due swapped orderings
of define-use pairs memory accesses being swapped.
This will be explained in further detail in the next
section of this paper.

3. Define-Use Bugs
AVIO [4] is able to detect a decent percentage of
bugs that we have studied. It is is a good start,
however, we can do better. Nearly one third of the
order related data race bugs could not currently be
detected with AVIO. It is possible to extend AVIO
to detect define-use bugs. We must carelly integrate
the define-use detection into AVIO so that we can
minimize the number of false positives.

3.1. Definition
We are interested in the following things when looking
at define-use pairs in a threaded applications: the
variable in question, the thread and instruction that
wrote to the variable and the thread and instruction
that read the variable. For our purpose, the define
should happen before the time the use happened.
Also, for any variable that is written to (defined) by
some thread, we are looking for the next read (use)
made by a different thread.

More formally, we can say that some program, P
contains a set of memory uses, U , which is all of the
memory reads and writes made by P . Each usage,
ui

k, is defined by two things: k, the thread that is

making the memory access and i, the instruction in
that thread that is making the access. A define-use
pair is < v,ui

k,uj
m>, where v is the variale that is

being written to and read. Note that if i = j, then the
variable is being defined and used by the same thread.
This is a trivial define-use pair and we will be ignoring
such define-use pairs.

4. Example Define-Use Bugs
To better understand the type of define-use bugs that
can occur it is helpful to look at specific examples.
These examples give us motivation and things to think
about in concurrency bug detection.

4.1. Example 1: Window focus race (Mozilla)
In this bug, the focus isn’t given to the correct win-
dow. What we found is that if one thread resets the
PaintSuppressionTimer (which is a shared variable)
before ther other, the focus gets incorrectly set. The
folowing are examples of how the execution of code
is ordered during good and bad (buggy) runs.

The following is a good run:

with a define-user pair that looks like:
<mPaintSuppressionTimer,
(timer,mPaintSuppressionTimer=null),
(window,mPaintSuppressionTimer=null)>

And this is what happens during a bad run:

define-use pair:
<mPaintSuppressionTimer, (win-
dow,mPaintSuppressionTimer=null),
(timer,mPaintSuppressionTimer=null)>

We must be careful when evaluating bugs. What
we imagined the buggy execution to look like is that
there is some variable or data structure marking which
container gets focus. We would then expect to see

2



two different threads writing to it so each can claim
focus, and if the ordering is messed up then focus
would be incorrectly set. We found what may be
causing this bug, but we cannot tell if this truly is the
problem or just a symptom of the problem. If one
ordering is off, it is possiable to have other important
oderings swapped. If we were to keep track of all
the define-use relationships we may find more then
one swapped ordering in a buggy run. These extra
differently ordered define-use relationships may be
detected as false positives so we may need to do extra
work to prevent such things.

4.2. Example 2: Creating New Threads
(Mozilla)

This example adds to our motivation of extending
AVIO to detect define-use bugs. The following is
a define-use bug happened in an older version of
Mozilla during the creation of a child thread. In
this example, the state variable is not shared but the
mThread structure is shared between threads.

This is what happens when the bug dosen’t surface:

The define-use pair looks like the following:
<mThread->state, (Parent, mThread->state=...),
(Child, state = mThread->state)>

This is what happens during a run when the bug
surfaces:

With a define-use pair such as:
<mThread->state, (Parent, mThread = Cre-
ateThread()), (Child, state=mThread->state)>

This is a buggy run because the mthread->state
variable gets set incorrectly. We must note however
that when CreateThread() is invoked, mThread->state
may or may not be initialized. If it isn’t set, then there
is a bug bug because it is an uninitialized variable.
The use of uninitialized variables are bugs that can be
detected using existing bug detection methods. If it

is initialized then we have a different define-use pair
because the variable is defined by a different instruc-
tion then its use, so there will be a define-use pair in
the correct run that is missing from the buggy run.
When we look at the differences between define-use
pairs in subsequent runs, we want to look for missing
define-use pairs that cause different defining statement
for the same use for some shared variable.

5. Implementation
We are implementing our ordering bug detection
tool bugs using Pin [2]. Pin is tool that allows us to
instrument programs during runtime. It enables us
to trace memory accesses (reads and writes) made
by each thread. We can use this information to keep
track of all the set of define-use pairs that occur in the
first run onf the program. Lets call this set D1. When
the program is run subsequent times, we can find
the differences between the sets define-use pairs and
discard the pairs that differ if we had a correct run. So
for each run we collect a set of define-use pairs Di and
find the set D that contains the define-use pairs that
aren’t changing between correct runs so D=D∩Di.
We can keep on running the program with the pin tool
wrapped around it to train our detector so it knows
what define-use pairs are consistent between correct
runs. If we have an incorrect run of the program we
can see which define-use pairs that are consistent in
good runs thar are missing from the buggy run. The
missing pairs tell us that the programmer may be
assuming that those orderings are important and the
program may run incorrectly if they are violated.

The detector we are building will eventually
integrated with AVIO to make AVIO more sensitive
and powerful. AVIO is also implemented using Pin,
so our biggest concern while integrating the two is
making sure that they run efficiently and in harmony
with each other.

6. Conclusion
Through our bug servey we were able to pin down
common types of bugs to work to detect. AVIO does a
good job at detecting many of these bugs, but there is

3



still room for improvement. If we combine the power
of AVIO and something that infers what orderings are
needed for a correct program, we can have an even
more powerful tool.

Although there is much more work to be done in
define-use/ordering bugs, our research has allowed us
to find motivation and make a push to continue the
work.

7. Acknowledgements
I would to thank everyone who have made this
enlightening summer of resarch possible for me. First
and foremost, I would like to thank my faculy mentor,
Yuanyuan Zhou. She gave the the opportunity to
spend the summer at the University of Illinois and
taught me valuable lessons about life as a researcher
and as a graduate student. Shan Lu was my graduate
student mentor, who gave me inspiration to take on
the project and supported me through the rough times.
The other graduate students in the OPERA research
group were also exremely wonderful and helpful
including, but not limited to: Qingbo Zhu who helped
me settle in, Joe Tucek who let me work in the server
room with him, Pin Zhou, Spiros Xanthos, Soyeon
Park, Zhenmin Li and Feng Qin, Finally I would
like to thank the Distributed Mentor Program for the
funding that made my research possible.

References
[1] A. Dinning and E. Schonberg. Detecting Access

ANomalies in Programs with Critical Sections. ACM,
85-96, 1991

[2] IBM Pin. http://rogue.colorado.edu/pin

[3] L. Lamport. Time, Clocks and the Ordering of Events
in a Distributed System. Communications of the ACP,
21(7):558-565, July 1978.

[4] Lu, Shan “AVIO: Detecting Atomicity Violations via
Access Interleaving Invariants,” University of Illinois
Urbana-Champaign, Unpublished.

[5] Poulsen, Kevin. SecurityFocus, Software Bug Con-
tributed to Blackout. Feburary 11, 2004.

[6] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro and
T. Anderson. Eraser: A dynamic data race detector for
multithreaded programs ACM TOCS, 1997

4


