
Mozilla - Bug 209188

1. Correlation

1775 CanHandleUrl()

1677 IsBusy(&isBusy, &isInboxConnection);

………

1686 if (isBusy)

1687 {

………

1689 NS_ASSERTION (m_runningUrl,"isBusy,

but no running url.");

……

}

…….

1738 IsBusy(PRBool *aIsConnectionBusy,

…)

1754 if (m_urlInProgress)

1755 *aIsConnectionBusy =

PR_TRUE;

Conclusions

����We can see that when m_urlInProgress is true,

m_runningUrl has to be non-null otherwise we get an

assertion. The correlation is determined by the assertion.

���� Number of occurrences together in one function is 4:

- (lines) 904 + 902 - the same basic block – w, w

- 1052 + 1055 - close together, w(m_urlInProgress), r

- 1193 + 1178 - different basic blocks, r, r

- 1703 + 1712 - same basic block, w(m_urlInRPogress), r

���� Number of occurrences of each: m_runningUrl: 58(3 w, 55

r), m_urlInProgress: 7 (4 w, 3 r)

IsBusy() appears only once is a function and that is with

m_runningUrl, except for when it is defined. IsBusy occurs in 2

other functions, but it is different.

���� Also, in this example our algorithm should be able to find

trans-function correlations, inline functions in others at least

once.

All functions described here are in http://lxr.mozilla.org/mozilla/source/mailnews/imap/src/nsImapProtocol.cpp

Bug 209188 - continuation

2. The bug

T

I

M

E

1283 ProcessCurrentUrl()

{…..

1413ReleaseUrlState(PR_FALSE)

……

1417m_urlInProgress=PR_FALSE;

}

853 ReleaseStateUrll()

{….

876 m_runningUrl = nsnull

…..}

1775 CanHandleUrl()

1677 IsBusy(&isBusy,

&isInboxConnection);

………

1686 if (isBusy)

1687 {

………

1689 NS_ASSERTION (m _runningUrl,

"isBusy, but no running url.");

…… }

1738 IsBusy(PRBool

*aIsConnectionBusy, …)

1754 if (m_urlInProgress)

1755 *aIsConnectionBusy =

PR_TRUE;

What happens

m_runningUrl is set to null and after

some time m_UrlInProgress is set to

false which maintains the correct

correlation. However, in the time

interval between the two

assignments, the correlation is not

maintained and the assertion fires.

Conclusions

Here we also have to be able to see

across functions to find the faulty

interleaving. In this function one

level of inlining is enough.

The patch makes sure that the two

assignments take place atomically.

.

All functions described here are in http://lxr.mozilla.org/mozilla/source/mailnews/imap/src/nsImapProtocol.cpp

