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Introduction

� Multi-core CPUs are here

� Concurrent programming is:

� Difficult to reason about,

� Prone to races and deadlocks.

� We need:

� Simpler programming models, 

� Safer programs. 
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Autolocker: Overview

� Solution: pessimistic atomic sections
� Why atomic? 

� Simplicity

� Modularity 

� Safeness

� Why pessimistic? 

� Compatibility 

� Less overhead than optimistic

� Implementation: intermediate tool that transforms 
atomic sequences to lock semantics
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Autolocker: Overview

� Shared data is protected by annotated locks.

� Threads access shared data in atomic sections:

� Threads never deadlock (due to Autolocker).

� Threads never race for protected data.

mutex m;

int shared_var protected_by(m);

atomic { ... x = shared_var; ... }

In an atomic section, code runs as if there is no concurrency.
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Autolocker Transformation

� Autolocker is a source-to-source transformation.

mutex m1, m2;

int x protected_by(m1);

int y protected_by(m2);

atomic {

y = 3;

x = 2;

}

Locks are acquired in a global order “<“ determined by partial 

orders. They are released when the outermost atomic section ends.

Autolocker code C code

int m1, m2;

int x, y;

begin_atomic();

acquire(m1);

acquire(m2);

y = 3;

x = 2;

end_atomic();

Suppose

m1 < m2.
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Granularity and Autolocker

� In Autolocker, annotations control 

performance:

� Simpler than redoing most of the locking

� Changing annotations will not introduce 

deadlock or race conditions.

struct entry {int x; char y;}

mutex m;

struct entry array[SIZE] protected_by(m);

struct entry {mutex m; int x protected_by (m); 

char y;}

struct entry array[SIZE];



8

Outline

� Introduction

� overview

� benefits

� Autolocker algorithm

� match locks to data

� order lock acquisitions

� insert lock acquisitions

� Related work

� Experimental evaluation

� Conclusion



9

generate global

lock order

Algorithm Summary

atomic {

…

}

C program

with atomic

sections

begin

acq L1, L2;

end

lock order

cyclic?

yes
no

fail and report

potential deadlock

C program

with acquire

statements

insert ordered

lock acquisitions

lock

requirements

remove redundant

acquisitions

begin

acq L2;

end

match locks to data



10

Algorithm Summary

atomic {

…

}

C program

with atomic

sections

begin

acq L1, L2;

end

lock order

cyclic?

yes
no

fail and report

potential deadlock

C program

with acquire

statements

match locks to data

generate global

lock order

insert ordered

lock acquisitions

lock

requirements

remove redundant

acquisitions

begin

acq L2;

end



11

Matching Locks to Data

bar

quxbaz

functions

C program with

atomic sections

void foo() {

atomic {

use m2;

y = 3;

use m1;

x = 2;

}

}

mutex m1, m2;

int x protected_by(m1);

int y protected_by(m2);

Symbol table

use m ≡

the lock m must already be 

held when this statement is 

reached

foo
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Acquisition Placement

� Assume there’s an acyclic order “<” on locks

void foo() {

atomic {

acquire m1;

acquire m2;

y = 3;

acquire m1;

x = 2;

}

}

m1 < m2 global lock order

We must acquire m2…

... but since m1 is needed later

… and it is, in order, before m2

… we acquire m1 first
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match locks to data
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� We search for any code matching this 

pattern:

� Any feasible order must ensure m1 < m2

Finding the Partial orders

use lock m1;

…

maykill lock m2;

…

use lock m2;

• “maykill lock m” happens when a lock 

is being assigned another value 

• a lock cannot be acquired again after it 

was killed.

• a variable protected by a lock m 

cannot be accessed after m is killed if m 

is not acquired after the kill.
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A burning question…

� The reason for which they allow locks to be 

overwritten is to give control over granularity to the 

programmer.

� This has drawbacks:

� Create the entire partial order problem.

� Such a global order might not exist.

� Limits greatly expressiveness of language.

� Is the control over granularity really worth all these? 

Or, can we find a better solution? 
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Computing the Global Order

foo bar

quxbaz

functions

Constraints

m1 < p->m’
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m1 < r->m
m3 < p->m

q->m < p->m

m1

r->m

q->m

p->m

p->m’

Global Lock Order

search for

infeasible

patterns

topological sort
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Related Work

� Transactional memory also does atomic blocks

� Threads work locally and commit when done

� A thread rolls back if another thread changed the 

data it accessed

� Benefit: no complex static analysis

� Drawbacks:

� software versions: can be slow

� hardware versions: need new hardware

� both: some operations cannot be rolled back (e.g., 

I/O)

� How does this compare with Autolocker?
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Concurrent Hash Table 

� Simple microbenchmark

� Compared Autolocker to:

� manual locking

� Fraser’s object-based transactional memory manager

� Ennals’ revised transactional memory manager
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Hash Table Benchmark

Machine: four processors, 1.9 GHz, HyperThreading, 1 GB RAM

Each datapoint is the average of 4 runs after 1 warmup run
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AOL Server

� Threaded web server using manual locking

negligible impact (~3%)Performance

78/82 modules used original 

locking policies
Problems

126 types annotated with 

protections

143 atomic sections added

Changes

82 modules

52,589 lines
Size
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Conclusions

� Contributions:

� a new model for programming parallel systems

� a transformation tool to implement it

� Benefits:

� performance close to well-written manual locking

� freedom from deadlocks

� freedom from races on protected data
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My Conclusions

� Besides annotations, programmers have 

to be aware of rules 

� Decreased expressiveness

� Two-phase locking has limitations

� I think it is a good start if we can avoid 

overwriting locks…

� Questions?


