

Design Of Graphical User Interface And Server and Client System Of Networked
Aquatic Microbial Observing System

 Koto Norose Arvind Pereira Bin Zhang Amit Dhariwal
Undergraduate Researcher Graduate Student Mentor Graduate Student Mentor Graduate Student Mentor

Gaurav Sukhatme

Faculty Mentor

norose@eng.utah.edu, {menezesp, binz, dhariwal, gaurav}@usc.edu

Technical Report
Robotic Embedded Systems Lab
Department of Computer Science
University of Southern California

Aug. 16, 2006

ABSTRUCT
This paper describes the design of a simple Graphical User Interface (GUI) and
server and client system for the Networked Aquatic Microbial Observing System
(NAMOS). The network has ten static buoy nodes and one mobile robotic boat to
measure the chemical, physical and biological phenomena. The goal of the
network is to gain high-resolution information of plankton assemblages in aquatic
environment and hydrographical requirements. This network will contribute to
enable (1) real-time observation in aquatic ecosystems and (2) sensor actuated
sampling for biological analysis. The objective of the GUI and server and client
system for NAMOS is to enable a user to select a buoy, connect to it, get data of a
specific time period, and plot these data without knowing the command line.

1. INTRODUCTION

This report describes the design of a simple Graphical User Interface
(GUI) and server and client system for the Networked Aquatic Microbial
Observing System (NAMOS). NAMOS is a research project involving robotics,
sensor networks and marine biology. The goal of NAMOS is to perform adaptive
hydrographic sampling using a network consisting of buoys and boats, and to
develop strong, decentralized algorithms and hardware to enable this task. The
objective of the GUI and server and client system for NAMOS is to enable a user
to select a buoy, connect to it, get data of a specific time period, and plot these
data without knowing the command line.

2. SYSTEMS AND ALGORITHM TO GATHER DATA OF A SPECIFIED

TIME RANGE
The buoy works as a server and the laptop works as a client. The client

will send a request to the server and the server will send the requested data to the
client. The fundamental server and client system has been developed using socket
programming [1]. The server is written in C and the client is written in C#.

First, the date and time format was determined for the client GUI. The
input style of the GUI will be the same style as the C# time stamp. Examples of
this format are:
 8/10/2006 4:13:45 PM

 8/11/2006 0:0:3 AM
The advantage of this is that we can use built-in time stamp functions to easily
convert between strings and numbers. The GUI will require two inputs: start time
and end time. These will be sent to the server, and the server will send the data
between these times.

Next, the client computer converts the input time to number of seconds
since 1/1/1970 0:0:0 AM at the hardware on the buoy. Then the program
calculates the difference between two inputs and sends starting time in seconds,
the difference time in seconds, and the resolution in seconds to the server. The
user can set the resolution by means of a track bar on the GUI. The resolution
control enables the user to request and quickly receive high-resolution data over
small range of time or low-resolution data over wide range of time.

Once the server receives the request from the client, the main thread of the
server runs the algorithm to gather data for the specified time range. That is, first
it finds the start time, then it finds the end time, then it calculates the number of
samples to pick from the resolution, then it gathers and sends the data.

It first finds the start time. Since the server is written in C and the data are
stored in a text file, the program searches from the end of the file and goes
backwards, checking at each character for a new line. Until the new line has been
reached, the program stores the characters in an array. If it finds a new line, then
it reads the beginning of the stored array that contains the time in seconds. The
program compares this time and the start time input, and stops if the found time is
close enough to the start time input.

The program then goes back to the older data while the difference between
the start time and the old data time is smaller than the requested input difference
time using same method as used to find the start time.

After finding the proper time, the program picks the number of data
corresponding the input resolution and stores them in an array. If the array isn’t
big enough, then the program sends an error message, otherwise it sends the array.

When the client gets the data from server, and if the data is not the error
message, then the client saves the data to a text file. Consequently, the client calls
the plotting software to plot the data and save that plot as a picture file. Finally,
the client shows that picture file to the user.

3. OTHER FEATURES

Several other features were added to the GUI. These are: One click
connection and disconnection, the guide message for the user when the user set
the cursor at the input, and status messages for the user. The status messages
indicate whether the connection is ok or not, the scale of x-axis of the graph, etc.

4. TEST RESULT

The GUI was first simulated using a Linux machine and a data file from a
past field trip. After this simulated successfully, real-time experiments were
performed with the GUI and with the server executable running on the buoy.
These experiments were also successful, although sometimes the data transfer
took time and the plot picture didn’t upload every time the user requested the data
plot.

5. CONCLUSION

The GUI successfully connected to the buoy, got data from a specific time
period, and plotted its graphs as expected. The GUI and server were validated
using the hardware that will be used in actual field experiments, and the results
were successful. Therefore, the GUI and server and client system are successfully
developed. In the future, we could improve our GUI and server and client system
as an oscilloscope in the Electrical Engineering but it is not limited.

REFERENCE

[1] A. Dhariwal, B. Zhang, C. Oberg, B. Stauffer, A. Requicha, D. Caron, and G. S.
Sukhatme, “Networked Aquatic Microbial Observing System,” in IEEE International

Conference on Robotics and Automation, Orland, FL, May 2006.

