
1

On the Importance of Starting Trees
Suzanne J. Matthews and Dr. Tiffani L. Williams

Department of Computer Science

Texas A&M University

College Station, TX 77843

Contents

I Introduction 1
A Maximum Parsimony 2
B Methods for Phylogenetic Tree construction 2
C Disk Covering Methods 2
D Parsimony Ratchet 2
E Starting Tree Construction 3

II The RAq Approach 3
A Distance Matrix Creation 3
B Decomposition 4

B.1 Problems with Annealing q method 4
B.2 Taxon Recognition 4

C Merging and supertree creation 5
C.1 Subtree creation 6

D Supertree Creation 6

III Benchmarking and Results 6
A Tree score graphs 7

IV Discussion and Future Work 7
A Tree Score Analysis 7
B Future Work 8

V Acknowledgements 9

Abstract—Our premise is that starting tree structure af-
fects the quality of a maximum parsimony search. While it
is generally believed that starting tree structure is impor-
tant to phylogenic search, no study has yet been performed
to show the degree to which (if any) a starting tree’s struc-
ture improves the quality of a phylogenic search. We hy-
pothesize that better starting trees will yield better phylo-
genic searches; according to this hypothesis, random trees
(a tree created by an arbitrary arrangement of taxa) would
perform the worst. To rigorously test this hypothesis, start-
ing trees created with the distance-based neighbor-joining
(NJ) method, as well as random trees and random sequence
addition (RSA) trees were fed into the parsimony-ratchet
framework found within PAUP; maximum parsimony scores
resulting from the search were then extracted and com-
pared. This process was performed over multiple taxa sets,
ranging from 51 to 1127 taxa in size. In addition to test-
ing the performance of existing starting tree methods, we
also introduce a novel method for starting tree construc-
tion called The RAq Approach, a DCM-based algorithm that
is partially inspired by threshold graphs. Our results indi-
cate the the RAq approach performs competitively well to
the other starting tree construction methods. However, our
results also indicate that starting tree structure is not im-
portant to phylogenetic search, as the random tree assisted
search consistently performed the best.

I. Introduction

THE study of phylogeny, or the organization of species
in relation to one another, has increasingly captivated

scientists. With a burgeoning wealth of biological datasets
scattered all over the globe, the need to successfully or-
ganize and manipulate this data is growing ever stronger.
The ability to classify different species assists in various
applications, including forensics, disease and poison
control, drug development, and the prediction of the
evolutionary relationships between all life on this planet.

Mutations, and their relative fitness in a particular en-
vironmental context, drive the process of evolution. In the
process of speciation, two or more new species originate
from an ancestral species, due to a mix of environmental
and genetic changes. This is the generally accepted model
on how all life evolved on the planet. In order to study how
different organisms are related to each other, it is there-
fore very important to take a look at the changes that take
place at the genetic level, particularly at the protein and
DNA levels. In the context of maximum parsimony, it is
desirable to analyze sequence data at the RNA or DNA
levels, as the “wobble effect” found in amino-acid chains
can mask individual base mutations.

2

A. Maximum Parsimony

Maximum parsimony (MP) is a popular criterion that is
applied to many phylogenetic construction algorithms. Its
relative simplicity is derived from the principle of Occam’s
razor, in which the simplest explanation is often the most
desirable. Known as the lex parsimoniae in Latin, it states
that “entities are not to be multiplied without necessity”.
Applied to phylogeny, this roughly translates to “the path
of evolution is the simplest, and the most direct”, implying
that evolution occurs with the least number of changes as
possible. Using this criteria, organisms with less sequential
differences are categorized as being more closely related
that those with larger number of differences; with that
said, it should be noted that DNA sequences are largely
conserved over a large spectrum of species. In the scope
of this paper, our phylogenetic searches and starting tree
constructions are made under the assumption of maximum
parsimony.

B. Methods for Phylogenetic Tree construction

Under the MP criterion, various methods for inferring
phylogenies exist; of these, the most popular are distance
based methods, and heuristic searches. Distance-based
methods build phylogenetic trees off of an existing dis-
tance matrix, using some pre-defined distance metric.
The most naive of these methods is the Hamming (or
uncorrected) distance, in which the pairwise “distance”
between two organisms is simply the number of differing
bases between the two taxa. However, this is generally
accepted as being an unreliable metric for distance. The
more popular Jukes-Cantor model for distance assumes
that each position in the sequence has an equal chance
of mutating; therefore, there is only a 75% chance that
the mutation of a certain base will be different. The
Jukes-Cantor method thus “corrects” the uncorrected
distances to overcome this issue. However, when the
distance between two sequences is greater than 0.75, the
distance becomes undefined. The Felsenstein 81 model
can overcome this annoyance.

Despite the large popularity of the JC method, many
dislike it, as it assigns an equal probability to all bases.
To counter this, the closely related Kimura 2-parameter
(K2P) model was created, having different probabilities
assigned depending on whether or not the mutation
is labeled a transition (A-G, C-T) or a transversion
(everything else). Still others prefer methods such as
Felsenstein 84 or HKY85 distance, since they tend to take
other biological trends into context. After the distance
matrix is created, a tree structure is obtained using
some type of supertree method, the most popular of
these being the neighbor joining method. Trees created
with this method tend to be statistically consistent, and
highly efficient; trees created with the neighbor joining
can construct trees from large biological datasets in
polynomial time. However, due to the basic “greedy”
nature of the algorithm, it is possible for the tree to be
not be a global approximation of the true tree; rather,

it may be a good local approximation of some subset of
the tree [2]. Furthermore, the neighbor joining method
will always yield a single tree per matrix. This can
be undesirable, as the one tree this method produces
is the only one presented as the “true” tree approximation.

In contrast, heuristic approaches to tree building, such
as Maximum Likelihood(ML) and MP, tend to produce
several, statistically good solutions, allowing for a greater
chance for a good tree to be found. In the scope of
this paper, only maximum parsimony methods will be
discussed. Popular examples of maximum parsimony
searches include the Rec-I-DCM3 framework, developed
by Tandy Warnow, and the Parsimony Ratchet method,
supported by PAUP. Both these phylogenetic search
utilities are dependent on an initial tree structure, known
commonly as a starting tree.

C. Disk Covering Methods

Disk Covering Methods (DCMs) are a class of algo-
rithms developed by Tandy Warnow. All disk covering
methods are composed of three main parts: some decom-
position strategy, some merging stategy, and resolution
of the tree if needed. During the decomposition stage,
the biological dataset is first decomposed into a series
of overlapping subsets. Since the subsets overlap, the
leafsets of the trees will also overlap[9]. These overlapping
leafsets are then merged together by a supertree method;
in the context of the DCMs discussed in Warnow’s paper,
the supertree construction method of choice is the Strict
Consensus Merger, which expoits the great overlap of
subsets in order to properly construct a phylogenetic tree.
After the supertree is constructed, it is usually refined to
maximize a certain criterion, such as maximum parsimony.
Therefore, starting tree construction via DCMs can be
considered just the set including decomposition and
supertree construction.

All current DCMs start by creating a triangulated
graph; this triangulated graph can be derived from a
variety of methods. For example, threshold graphs (TGs)
use a static q value (acting as the “threshold”) to derive
a subset of the taxa; the resulting subset is then triangu-
lated. This is important to note for our later discussion of
design decisions for the RAq algorithm.

D. Parsimony Ratchet

The parsimony ratchet is a particular kind of phyloge-
netic search performed with alternating cycles of reweight-
ing and TBR (Tree Bisection Recombination). The ap-
proach works as follows; starting with an initial tree, a
few of the characters (between 5 - 25%) are sampled, and
reweighted. It suffices to say here that reweighting of char-
acters involves using the duplicating the characters so that
each shows up twice (or more) in the resulting dataset[2].
Then, using these reweighted characters, TBR search is

ON THE IMPORTANCE OF STARTING TREES 3

performed until a new starting tree is reached using this
subset of data. This new starting tree is then used with the
original data set to repeat the phylogenetic search. Par-
simony ratchet tries to refine the search by generating a
tree from a small subset of the data and using it as a new
starting point. The approach so far has worked well so far;
in the famous Chase experiments, the Parsimony Ratchet
found a new best tree score for the 500 zilla dataset in a
fraction of the time than a previous study done by Rice et.
al; speedup was estimated as above 1000 percent [5].

E. Starting Tree Construction

As mentioned before, phylogenetic searches like the
parsimony ratchet require an initial starting tree from
which to direct their searches. Currently, there are several
ways to create a starting tree. The simples of these
is the Random method, in which a set of n taxa are
randomly place together into a tree structure, irregardless
of any particular criterion. Some scientists, however,
use the RSA (Random Sequence Addition) method to
create a starting tree. RSA works as follows: Given
a random sequence of taxa {a1, a2, ..., an}, where a
represents a random, distinct taxon, construct a tree by
adding one taxon at a time, at the most topologically
favorable location. While there is more overhead using
this method than using the Random method, it is assumed
that since topology is the criterion being selected for,
we will have a better approximation of the true tree
than if we used the Random method. Other forms of
starting tree construction include using distance-based
trees, such as the aforementioned neighbor joining method.

If starting tree structure does affect the quality of a phy-
logenetic search, then it would be beneficial to see which
starting tree are better, and under what conditions. This
will allow scientists to increase the speed and efficacy with
which they traverse tree space.

II. The RAq Approach

The RAq approach is a DCM-based method that was
created to test how well a DCM with a dynamic threshold
would perform in relation to previous methods, which
only had a static threshold. In [9], Warnow discusses
the problem with choosing an accurate threshold; if the
threshold is too small, the resulting subgraph would not
be connected. If the threshold is too large, then the
subproblems would be almost as difficult as the original
ones[9]. By using a dynamic threshold, it was hoped that
this problem of choosing a correct threshold would be
elimated, since a range of thresholds are used. Therefore,
taxa that are closer together will fall together in one
cluster, and those that are a bit less apart with fall into
the next and so on. Furthermore, the taxa chosen in the
first few intial clusters will determine what gets elimated
in the creation of later clusters; in this manner, taxa won’t
be repeated a large number of times.

Like other DCM based methods, the RAq approach

is composed of a decomposition method (RAq strategy),
and a supertree construction method (we used neighbor
joining). Furthermore, since RAq is a distance based
DCM method, an initial distance matrix is also created.

A. Distance Matrix Creation

As discussed above, several metrics for phylogenic con-
struction exist, the most popular being the Jukes-Cantor
class of metrics. However, this class of distance metrics
have a very serious flaw: all mutations, regardless of
type, are considered as having equal probability. This
is biologically inconsistent, as biological transitions are
more likely than biological transversions. For this reason,
a scoring model based on the K2P model (shown below)
was used, where the values of α and β were parametized.
We call this scoring model the DSdist metric, for Dynamic
Score distance. It is used as our primary distance metric
in our phylogenetic tree constructions.

A C

G T

α α

β

β

β

The K2P Model

Fig. 1. The K2P Model, on which the scoring metric is based.

To calculate the DSdist of two taxa t1 and t2, it is re-
quired that t1 and t2 are properly aligned. The Dynamic
Score is calculated as follows:

t1, t2[i] =

match score+ = match score
gap score+ = gap score

transition score+ = α
transversion score+ = β

Since pairwise alignments produce scores and not dis-

tances, and since higher scores often correspond to higher
similarity, it was deemed necessary to normalize the scores
in order to yield a suitable distance. Normalization gave
us highly specific distances between 0 and 1. It also solved
another problem: the quality of a score is often dependent
on the size of the biological data set. For example, a
score of 100 would be relatively poor when the sequences
involved are > 1000 bps in length. Similarily, a score of 30
would be relatively good when the sequences are ≈ 10bps
in length. For this reason, it was necessary to express
the score as a function of length. It is hypothesized that
this metric will yield distances of a greater accuracy than
other metrics used. The DSdist is caclulated as follows:

DSdist =
ScoreMax − Score

ScoreMax
(1)

4

Where ScoreMax = lengthseq ×match score.

As you will later see, the use of the DSdist method yields
distances of a higher degree of specificity than uncorrected
distances. We will mention later why this is pertinent. For
the distance matrix creation step, a total of

(
n
2

)
scores are

calculated and stored linearly in associative array container
(STL map). The use of this data structure enforces that
the matrix remain sorted during creation.

B. Decomposition

The sorted distance matrix then prepares us for the next
phase of the RAq Approach: the decomposition step. De-
composition for the RAq approach is heavily dependent
on the use of a dynamic q value, that is a modification
from that found commonly in threshold graphs. Here, the
base threshold is incremented by a constant amount, the
q value, to yield several thresholds; elements that fall in
those threshold ranges will then be clustered together. For
example, if our q value is .1, we will ultimately have 10
clusters, in the range of [0, .1), [.1, .2), [.2, .3) and so on.
Increasing the q value will leave us with a smaller number
of clusters with a larger diameter (number of elements),
while decreasing the q value will leave us with several clus-
ters, but with reduced diameter. The pseudo-code for this
procedure is presented in figure 2.

void build_tree(new_tree, cluster, q) {
...
new_q = q/decay;
q_ = 0;
first_pass = 1;

while (e_itr != cluster.end()) {
if ((*e_itr).get_dist() > q_) {

if (!temp.empty()) {
if (first_pass) {

newtree.insert(temp, 0); //insert on left
newtree.left();
first_pass = 0;

}
else {

newtree.insert(temp,1); //insert on right
newtree.right();

}

temp.clear();
}
q_ += new_q;

}
else {

temp.push_back((*e_itr));
++e_itr;

}
}

Fig. 2. Code for simple annealing step.

B.1 Problems with Annealing q method

Preliminary benchmarking, however, demonstrated a se-
rious flaw in the Annealing q method. Confirming the re-
sults found by Warnow, cluster sizes still remain a little too

large to be made into a tree. Increasing the “stringency”
(or lowering the value) of our q does not help; large clus-
ters still remain too large, and small clusters now become
impossibly small (figure 7). The solution to this problem
is to add a horizontal bound, or λ value that will restrict
the diameter of the final clusters. If a particular cluster’s
diameter exceeds the λ bound, then it will be recursively
broken down into smaller clusters until it is small enough
to be processed. By creating such a horizontal bound, large
clusters can be processed efficiently and independently, re-
gardless of the size of other clusters. This prevents smaller
clusters from becoming even smaller, or degenerating to
the greedy solution. For every cluster that exceeds the
λ bound, a new threshold value is calculated, using the
following equation:

qnew = qold/decay (2)

From preliminary benchmarking, it was determined
that a “good” decay value would be 2, since this prevents
clusters from becoming small too rapidly. It should also
be noted that a λ value of 2 has been hardcoded into
the software implementation of The RAq Approach, and
that the effect of no other λ and decay values have been
tested 1. For future studies, it would be interesting to see
how adjusting these values will affect the RAq approach’s
efficacy as a starting tree method for MP search, or how
the topology of the new starting tree will be affected.

With our new thresholding method in place, the anneal-
ing code from above can be altered to look like this, yield-
ing the finalized version of our decomposition function (fig-
ure 3).

B.2 Taxon Recognition

In order for us to be able to merge overlapping subsets
together in later steps of the algorithm, while staying loyal
to the structure of our guide tree (which, consequentially,
is our decomposition tree), we put a restricting factor
on the number of times a certain taxon can appear in
the decomposition tree: each taxon can appear at most
twice. For example, a sequences of distances such as:
{1.2, 2.3, 3.5, 4.6, 5.7} is considered valid. However,
the sequence {1.2,2.3,3.5,1.3} is not valid, since three
was already introduced twice. While this makes our
merging step down the road a lot simpler, it drastically
narrows down our search space; for future studies,
it would be interesting to see how the removal of the
recognition vector would affect the construction of the tree.

With these methods in place, a final decomposition may
look like the tree in figure 4.

1 Since we are dealing with distances, note that a λ bound of 2
indicates that each of the final clusters will contain either two or four
taxa.

ON THE IMPORTANCE OF STARTING TREES 5

void build_tree(new_tree, cluster, q) {
...
new_q = q/decay;
q_ = 0;
first_pass = 1;

while (e_itr != cluster.end()) {
if ((*e_itr).get_dist() > q_) {

if (!temp.empty()) {
if (first_pass) {

newtree.insert(temp, 0);
newtree.left(); //insert on left
first_pass = 0;

}
else {

newtree.insert(temp,1);
newtree.right();

}

if (temp.size() > lambda) {
build_tree(newtree, temp, new_q);

}

temp.clear();
}
q_ += new_q;

}
else {

temp.push_back((*e_itr));
++e_itr;

}
}

Fig. 3. Code for recursive annealing decomposition.

C. Merging and supertree creation

In order to better represent the decomposition step
in code, the multifurcating tree was converted into a
binary tree via the left child, right sibling method of
tree construction. A multifurcating tree is converted
to this as follows: Let T be a multifurcating tree, with
subtree children {t1, t2, .. , tn}, with root r. The binary
representation of T , T b, is represented as follows: t1 is the
left child of r. t2 is the right child of t1. t3 is the right
child of t2, and t4 is the right child of t3 and so on. The
diagram below indicates the conversion (figure 5).

As mentioned before, the decomposition tree will now
act as a guide tree. However, repeated traversals through
our guide tree during the merge stage would be tedious
and time consuming; it would be more intuitive to grab
the leaf nodes, via a post-order traversal and store them
in a list to be merged. However, how does one do this,
while keeping faithful to the structure of the guide tree?
We refer to this as the numbering problem:

The Numbering Problem
Give a simple and intuitive method to number
all the nodes in a tree, so that the structure of
the tree would be obvious by analyzing the leaf
nodes.

The solution to this is giving each node a unique id.
The initial root node always has the id of 0. its children
has the ids of {1..n}. Using this numbering scheme, we

Fig. 4. Decomposition Example: 51 taxa

Fig. 5. conversion from multifurcation to bifurcation

6

end up with a tree structure of ids that looks like figure 6.

Fig. 6. numbering scheme for RAq Approach

By storing the id of its parent, each node remains faithful
to the decomposition by which it was created. Therefore,
when the leaves are grabbed via post-order traversal and
stored linearly in a list, there is an associated ID with each
leaf.

C.1 Subtree creation

As mentioned earlier, the λ-bound will cause clusters of
either two or four taxa to be clustered together in each leaf
node. As also previously mentioned, taxa were allowed
to overlap, though minimally so. Therefore, the first step
in subtree creation is merging together all the taxa that
overlap. For example, looking at our guide tree, we can see
that two of the clusters have elements 15.16 and 1.15 that
overlap, though they are distantly related. With the assis-
tance of a hash table, these are merged together, yielding
5.16.1. This newly formed merged lement then takes the id
of the more-left leaf, which in this case would be [0111111].

The second step in subtree creation is taking all these
merged taxa and forming a mini-subtree out of them. In
the case where only two taxa are present, they are merged
to form a simple tree structure (A,B). However, when more
than two taxa are present, for example the list {t1, t2, t3,
.. , tn}, we form a tree as follows; ((((t1, t2), t3), ..) ,
tn). These newly formed mini-subtrees each have the ids of
the leaves that they belong to; in this manner, leaves that
contained two sets of taxa can be merged consistently. The
merging of these mini-subtrees into their proper subtrees
follows the same methodology as overall supertree creation,
which will be described next.

D. Supertree Creation

The now properly formed mini-subtrees are hashed, their
ids acting as their keys. Like subtree creation, supertree
creation is a two step process. In the initial state, our hash
table is filled with the mini-subtrees ready to merged into
their proper subtrees. Following with our current trend,

and example of what the initial state of the hash table is
shown below:

TABLE I

Hash Table

0111111 ((15,16),1)
0111112 ((22,34),28) - ((((7,43),38),36),39)
011112 ((3,4),2)
01112 ((((31,44),11),10),45) - (((((12,21),33),29),20),51)
01121 ((19,24),40)

0112212 ((((23,35),37),5),6) - (17,18)
011222 (((8,9),26),14)
01222 (25,41)
021 (48,50) - (((46,47),32),49)
022 (13,30)

0311121 (27,42)

Notice how the elements belonging to the same leaf are
hashed to the same key. We also note the length of the
longest ID in the creation of this initial hash table. During
the first step, all the keys which have two or more trees
associated with it have their list of trees recursively merged
into one large subtree. This process is done as follows:

1. Grab first two trees from front of list, t1, and t2.
2. Create a a new tree T ’, and make t1 and t2 the left

and right subtrees of T ’ respectively.
3. Push newly formed tree T ’ to front of list.
4. Repeat steps (1..3), until only one tree remains in the

list
The next step involves rehashing. Finding the trees

with the longest id, we pop off the last bit of the id,
and then rehash the new id and tree into the table. In
this manner, the subtrees are always merged together in
a manner that is faithful to their decomposition; this is
what makes the unique structure of the id so essential.

After rehashing, ids with more than one tree associated
with it have their trees merged together, and the value of
longest (containing length of longest id) is decremented by
one. Then the rehashing process is performed again. This
alternating cycling of merging and rehashing is repeated
until one final tree remains, yielding a final tree represented
in newick format.

III. Benchmarking and Results

Benchmarking was performed over four biological
datasets, all originating from a plant or mammalian source.
These included the famous 500-zilla taxa set from Chase
et. al and the infamous experiments run by Rice et. al.
Parsimony Ratchet was chosen as the phylogenetic search
framework as choice, and 5 experimental runs(batches) of
200 iterations each were run on each data set. Some infor-
mation about the data set appears below:

ON THE IMPORTANCE OF STARTING TREES 7

TABLE II

Data set information

Id Num. Taxa Sequence Length Best Score
1 51 2045 4458

2 (zilla) 500 759 16218
3 921 713 40494
4 1127 N N

A. Tree score graphs

Best tree score found at each iteration was noted. Across
all experimental runs, the best tree score for each iteration
was averaged together. Best possible score was then sub-
tracted form this average to yield the average deviation
from the best, or steps from the best (see equation below).
These steps were then plotted.

stepsi =
∑N

x=1 score xi

N
− best score (3)

where stepsi represents the steps at the ith iteration, which
ranges from [1..200], N represents the total number of ex-
perimental runs, and score xi represents the score at iter-
ation i for experimental run x.
.

Fig. 7. Preliminary Benchmarking: Affect of q stringency on cluster
size. Note how increasing the stringency of the q value causes cluster
diameter to approach one very quickly; using a decay factor of 2
causes the cluster diameter to lessen at a slower rate.

IV. Discussion and Future Work

A. Tree Score Analysis

Tree scores and their steps were plotted over four
datasets. For the 51 taxa data set, it can be observed
that all four starting tree assisted searches found the best
score fairly quickly, with neighbor joining finding the best
score almost immediately. The RSA and RAq assisted
searches performed a bit worse, and Random assisted
search perfomed the worst. Over 200 iterations, however,

Fig. 8. Benchmark Analysis for 51 taxa - first 40 iterations. NJ finds
the best tree score fairly quickly. RSA and RAq perform similarily to
each other, followed by Random-assisted search, which performs the
worst. However, all approaches find the best score within the first 40
iterations.

Fig. 9. Benchmark Analysis for 500 taxa (zilla) - overall. Random
and Raq assisted approaches find the best score within the first 100
iterations, while NJ and RSA do not find the best score until iteration
199. This demonstrates the competitiveness of the RAq approach.

Fig. 10. Benchmark Analysis for 500 taxa (zilla) -first 50 iterations.
Demonstrates a close-up of the behavior of RAq and Random assisted
searches. RAq initially starts out as performing as the best, until
Random passes it around iteration 35.

8

Fig. 11. Benchmark Analysis for 921 taxa. None of the starting tree
assisted approaches find the best score in 200 iterations. However,
Random by far gets the closet to the best score (9.6 steps away). The
RAq approach, while outdoing RSA and NJ in the 500 zilla set, loses
its lead over RSA in this dataset, and only slightly outperforms NJ.

Fig. 12. Benchmark Analysis for 921 taxa - first 50 iterations.
Demonstrates a close-up of the different starting tree approaches.
Note how for the first 20 iterations, no starting tree approach demon-
strates a clear advantage over the other. However, by iteration 25
and onward, the Random tree assisted search demonstrates a clear
superiority over the other searches.

all starting tree assisted approaches found the best score.

A bit more separation was achieved for the 500 zilla
dataset. Here, both RAq and Random approaches found
the best scores far quicker than RSA or Neighbor Joining.
If we take a closer look at the first 25 and 50 iterations
of the experimental runs on this taxa set, we notice that
the RAq approach does fairly well, in fact, outperforming
the other methods; however, any advantage RAq had ends
quickly, as the random-tree assisted search does just as
well. By the end of 200 iterations, however, all starting
tree approaches found the best score, in 4 out of the 5
experimental runs ran.

Our most important data set recorded thus far is the
921 taxa set. With this data set, none of the starting

tree approaches reached the best score of 40494. However,
the random tree assisted method came the closest, being
only 9.6 steps away(table 4). This is significant, since this
data set shows the Random-tree assisted search having
a superior performance to the other three approaches, a
first time in our analysis that we observe such a breakaway.

Upon inspecting the performance of the four starting
tree approaches over the three datasets mentioned, we
come to the conclusion that, at least from a tree score
perspective, Random-tree assisted searches are the best
for phylogenetic search in a parsimony ratchet framework.
Even though it seems that the random tree assisted search
and the RAq assisted search tie performance-wise for the
500 zill taxa set, closer inspection even shows the random-
assisted search’s superiority (table 3). As you can see, the
random-assisted search still finds the best tree score faster
than RAq, though not by much. This seems to suggest
that starting tree structure is not relevant for phyloge-
netic search. However, we need to inspect the results of a
tree topology analysis before making any solid conclusions.

TABLE III

500 zilla taxa set: a closer look. This table shows the

earliest iteration at which an approach had x/5 runs find

the best score of 16218. If you notice, none of the starting

tree methods found a best score all five runs; therefore, in

the sixth column, we show the next best score found.

1/5 2/5 3/5 4/5 5/5 (n/a)
Random 31 53 58 87 16219

RAq 51 58 87 90 16219
RSA 58 87 90 199 16219
NJ 58 87 90 199 16219

TABLE IV

921 taxa set: a closer look. This table shows number of

steps each approach was away from the best score (40494) at

a set number of iterations. Please note that this table is

showing inherently different information than the previous,

as none of the starting tree approaches found the best

score with this taxa set.

50 100 150 200
Random 19.6 14.4 10.8 9.6

RAq 22.8 15.2 13.4 11.6
RSA 25.6 17.6 15.2 13.2
NJ 26.6 16.6 15.2 13.4

B. Future Work

For future studies, it would be interesting to study the
tree score rates of all the different starting tree methods
over more data sets, with ten experimental runs each. It
would also be interesting to test the affect of these different

ON THE IMPORTANCE OF STARTING TREES 9

approaches in different phylogenetic search frameworks,
such as TNT.

It would also be interesting to see how changing the su-
pertree method used by RAq would affect its performance;
it was noted by Warnow that as the evolutionary dataset
gets bigger, the error rate used by the neighbor joining
appraoches also increases rapidly. It would therefore be
useful to see how using a different supertree method would
affect the performance of RAq in relation to other starting
tree structures.

V. Acknowledgements

This work was supported by a grant through the Com-
puting Research Association (CRA) and the Distributed
Mentoring Project (DMP). Special thanks goes to Tiffani
Williams for being my advisor and having faith in me and
my crazy idea, and the following people for their support
during this project: grad mentors SeungJin Sul and
Hyun Jung, for their general advice and assistance with
PAUP ∗; D. Axelrod, E. Glasser-Camp, D. Harrison and
Wm. Harris for their advice and help troubleshooting,
you made my life fun and bearable. Also a special thanks
to anyone else I failed to mention here for their continuous
support for me throughout this summer; I sincerely thank
you for believing in me.

References

[1] Chase et. al. Phylogenetics of seed plants: an analysis of nu-
cleotide sequences from the plastid gene rbcL. Ann.Missouri Bot.
Gard. 80, 528-580, 1993.

[2] Felsenstein, Joseph. Inferring Phylogenies. Sinauer Associates.
2004.

[3] Goloboff, Pablo A. Analyzing large datasets in reasonable times:
solutions for composite optima. Cladistics 15, 415-418. 1999.

[4] Linder, Randal C. and Tandy Warnow. An overview of phylogeny
reconstruction. CRC Press, LLC. 2001.

[5] Nixon, Kevin C. The Parsimony Ratchet, a New Method for
Rapid Parsimony Analysis. Cladistics 15, 407-414. 1999.

[6] Rice et. al. Analyzing large datasets: rbcL 500 revisited. Syst.
Biol. 46, 554-563, 1997.

[7] Roshan et. al. Performance of supertree methods on various
dataset decompositions. Phylogenetic Supertrees: Combining in-
formation to reveal the Tree of Life, O.R.P. Bininda-Edmonds,
ed., Kluwer Acad. Publ., Dordrecht, 301-328, 2004

[8] Saitou, Naruya and Masatoshi Nei. The neighbor-joining method:
a new method for reconstructing phylogenetic trees. Mol. Evol.
Biol 4(4):406-425, 1987.

[9] Warnow, Tandy. Disk Covering Methods: improving the accuracy
and scale phylogenetic analyses. CRC Press, LLC. 2001.

[10] Williams, Tiffani L. and Mark L. Smith. ”Cooperative Rec-I-
DCM3: A Population- Based Approach for Reconstructing Phy-
logenies. 2005 IEEE Symposium on Computational Intelligence
in Bioinformatics and Computational Biology (CIBCB ’05), 127-
134, 2005.

