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Abstract 
 
Commercial databases run on 
multiprocessor systems exhibit 
particularly high levels of false data 
sharing resulting from the low cache 
coherency present in such systems. These 
databases suffer from cache-to-cache data 
transfers. Until now, research has only 
focused on hiding or accelerating these 
cache transfers, not reducing or 
eliminating them. Yet, to do this it must 
first be understood why and how the data 
is transferred. 
 
 
I.  Introduction/Motivation 
 
In the realm of database implementation 
and usage, large, commercial workloads 
(OLTP) frequently serve as a company’s 
foundation more than bricks and mortar 
ever could. Regardless of purpose, many 
businesses, such as online bookstores and 
airline reservationists, operate on the 
premise of constantly retrieving, adding, 
and modifying enormous amounts of data. 
 By its very nature, OLTP demands fast, 
concurrent access to lots of data. For this to 
be achieved, programs are run on shared-
memory multiprocessor systems. Yet, 
beyond all the perks of such a system comes 
one debilitating problem: cache coherency.  
 

Cache coherency results when the 
processors have learned to successfully 
“communicate”; that is, if one processor is 
writing to a data block, some internal 
memory procedure precludes the threads 
from other processors from either reading 
or writing to that same block. In reality, 
multiprocessing systems are notorious for 
their high levels of false sharing (in this 
case, the false sharing stems from cache-to-
cache transfers). This occurs when multiple 
threads attempt to access the same block of 
data. Because OLTP programs exhibit a 
great amount of thread parallelism, 
computer architects have recently been 
focusing on how these applications 
performed in the shared-memory 
environment. In summary, the research has 
shown is that these systems are 
extraordinarily inefficient. In fact, 
commercial applications spent 30 -35% of 
overall execution time on coherent read 
stalls, which are more prevalent as more 
users try to access data[2]. 
 
 It is our aim to locate the source of these 
transfers by observing when they are 
occurring and then mapping these instances 
back to a invocation in the program. 
 
II.  Background 
 
Over the past decade, much research has 
been done to improve the efficiency of 



databases, yet very little of this has targeted, 
or is even applicable to, online transaction 
processing environments. Despite its 
growing importance, research has been 
stymied because of the immense size, 
complexity, mutability, and primarily 
proprietary software licensing characteristic 
of OLTP databases[1]. Furthermore, most of 
the work available is somewhat dated—by 
computer industry standards; most of the 
papers being published in the late 1990s.  

 
Due to database schema and the mystery of 
OLTP data transfers, the bit of previous 
work done has been polarized. Software 
scientists attempt racing the issue of cache-
to-cache data transfers by raising the degree 
of multithreading. A multithreaded 
microprocessor is good for “hiding” latency 
misses, but the quantity of threads 
considered most advantageous is disputed, 
as their effects eventually level off [Figure 1, 
3, 4]. The counter camp has tried improving 
OLTP performance by improving the 
hardware. Considered methods include 
multiprocessor architecture and expanding 
cache size. Yet these tactics are approaching 
their limits as well, and subsequent 
research has suggested a bigger cache may 
only cause bigger problems [Figure 2, 1, 5].  
It is our understanding that discovering 
what is causing the transferring of cached 
data requires an analysis of the stratum 
linking hardware and software, as will its 
(hopefully) eventual elimination.  
 
What data is chosen to actually be stored on 
the cache must follow at least one of two 
rules. First is what is known as spatial 
locality: if a piece of data is used, it is likely 
that other data nearby will also be used. The 
second is temporal locality: if a piece of data 
is used once, it is likely to be used again. 
Interestingly, of the coherency-camouflage 
methods previously described, the 
prefetching method utilizes spatial locality 
while the snooping method relies on 

temporal locality.  “Multiple instruction 
issue and out-of-order execution provide 
only small gains for workloads such as 
OLTP due to the data-dependent nature of 
the computation and the lack of instruction-
level parallelism.” [4] For this reason, and 
other gleaned from other research, it was 
decided that temporal locality was much 
more relevant for OLPT environments and, 
consequently, our research. Moreover, one 
way to gauge the project’s success would be 
to evaluate the levels of spatial locality 
present in the cache. If the data is able to  

 
 
properly be stored near data that is 
commonly used with it, then the relevance 
of spatial locality will as a memory 
reference will become moot and threads will 
be able to execute their computations at 
chip level.  

  
 
Due to database schema and the mystery of 
OLTP data transfers, the bit of previous 
work done has been polarized. Software 



scientists attempted to race the issue of 
cache-to-cache data transfers by raising the 
degree of multithreading. A multithreaded 
microprocessor is good for “hiding” latency 
misses, but the quantity of threads 
considered most advantageous is disputed, 
as their effects eventually level off [3, 4]. 
The counter camp has tried improving 
OLTP performance by improving the 
hardware. Considered methods include 
multiprocessor architecture and expanding 
cache size. Yet these tactics are approaching 
their limits as well, and subsequent 
research has suggested a bigger cache may 
only cause bigger problems[1, 5].  It is our 
understanding that discovering what is 
causing the transferring of cached data 
requires an analysis of the stratum linking 
hardware and software, as will its 
(hopefully) eventual elimination. 
 
III.  Methodology 
 
III.A. Summary 

 
To best locate the program code instigating 
the transfer of cached data, the use of open-
source software would be imperative. Our 
research plan entailed investigating how 
and what OLTP environments were 
implemented in previous papers and then 
modeling our OLTP database to adhere to 
these specifications.  
 
Using the same method as above, a 
standard query set would be developed and 
executed N times. A trace file would be 
produced during runtime. Through the use 
of a specially-developed program, the trace 
file will be analyzed to find where data 
transfers were happening, computer 
performance statistics, and, perhaps, 
perform some rudimentary data mining 
(see Section V, “Future Work”). 
 
III.B. Specifications 
 

To track program threads and memory 
accesses, it is crucial for all of our software 
to open-source. Our platform was the latest 
version of the Linux kernel. Incidentally, for 
OLTP “operating-system activity is non-
negligible, but it also does not dominate the 
memory system behavior”[1]. The database 
used was PostgreSQL 8.1, an open-source 
database with the commercial workload to 
be generated based on the Transaction 
Processing Council’s Benchmark C (TPC-C).  
 
The program written split the trace of the 
running application into two pivotal pieces: 
threads and addresses. Included in each 
line of the trace file is a thread ID, program 
counter (hexadecimal), destination address 
(hexadecimal), thread size (bytes), and 
whether the instruction is a read or a write. 
Statistics compiled include: examining the 
frequency of address, thread, and 
instruction invocations, thread lifetime, and 
first-access writes, etc . Understanding 
first-access writes is crucial since these will 
always result in false sharing, by definition. 
Since this project is merely an auxiliary job 
in a larger body of research, a number of 
statistics that may not seem pertinent to the 
task were implemented that may later prove 
useful.  

 

III.C. TPC-C, in brief 

 
There is some animosity TPC-C. Some say 
the benchmark is outdated and does not 
meet the high-volume data and traffic needs 
of today’s commercial world. Regardless, 
the aim was to approximate how a real 
OLTP environment would operate, not to 
measure system performance. The TPC-C 
acts as a warehouse of a wholesale 
distributer of 100,000 unique items with 
queries designed to mimic the order-entry 
queries  that would be used in any business 
environment that manages and sells a 
product. TPC-C includes the following mix 



of five randomized, synchronized database 
transactions: 43% new 10-item orders, 43% 
payments, 4.3% deliveries, 4.3% stock level 
checks, and 4.3% order-status checks. 
Within each of these transactions are even 
more stipulations, making the benchmark 
thorough and all-encompassing, perfectly 
adequate for a complete trace file.  

 
IV. Implementation/Dilemmas 
 
Trouble began with what was originally 
planned as an intermediary step—dragging 
a three-day task past three months. The 
TPC-C standards need to be created, 
requiring the use of either a database 
generation/execution program or the 
coding of such a program, which time 
would not allow. Finding software that 
could run in a Linux environment and be 
synchronized with our PostgreSQL database 
was difficult. Eventually, a kit released by 
Open-Source Development Labs, Inc. was 
found called Database Test Suite 2 (DBT2). 
Unfortunately, poor documentation with 
this program caused weeks of grief as we 
tried to figure out how it worked. 
 
Additionally, it was learned that due to the 
vast numbers of instructions processed on a 
multiprocessor machine in just a small 
amount of time, an adequately-sized trace 
file would be too large to process. The trace 
file generation code and analysis program 
would need to be modified to allow 
execution lines to be buffered shortly and 
piped in. 
 
V. Future Work 
 
Foremost, a solid and comfortable grasp be 
attained on the operation and execution of 
DBT2 so the TPC-C benchmark may be met 
for the generation of a trace file. Also, 
pattern “mining” techniques for finding 
what data (memory addresses) are used 

together will be beneficial in the processing 
of this, and future research.  
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