

SOLVING THE MYSTERY OF TRANSFERRED OF CACHED DATA IN A

MULTIPROCESSOR, OLTP ENVIRONMENT

Brittany Kwait
Fordham University

kwait [at] fordham.edu

Dr. Kelly Shaw
Department of Mathematics & Computer

Science
University of Richmond

kshaw [at] richmond.edu

Abstract

Commercial databases run on
multiprocessor systems exhibit
particularly high levels of false data
sharing resulting from the low cache
coherency present in such systems. These
databases suffer from cache-to-cache data
transfers. Until now, research has only
focused on hiding or accelerating these
cache transfers, not reducing or
eliminating them. Yet, to do this it must
first be understood why and how the data
is transferred.

I. Introduction/Motivation

In the realm of database implementation
and usage, large, commercial workloads
(OLTP) frequently serve as a company’s
foundation more than bricks and mortar
ever could. Regardless of purpose, many
businesses, such as online bookstores and
airline reservationists, operate on the
premise of constantly retrieving, adding,
and modifying enormous amounts of data.
 By its very nature, OLTP demands fast,
concurrent access to lots of data. For this to
be achieved, programs are run on shared-
memory multiprocessor systems. Yet,
beyond all the perks of such a system comes
one debilitating problem: cache coherency.

Cache coherency results when the
processors have learned to successfully
“communicate”; that is, if one processor is
writing to a data block, some internal
memory procedure precludes the threads
from other processors from either reading
or writing to that same block. In reality,
multiprocessing systems are notorious for
their high levels of false sharing (in this
case, the false sharing stems from cache-to-
cache transfers). This occurs when multiple
threads attempt to access the same block of
data. Because OLTP programs exhibit a
great amount of thread parallelism,
computer architects have recently been
focusing on how these applications
performed in the shared-memory
environment. In summary, the research has
shown is that these systems are
extraordinarily inefficient. In fact,
commercial applications spent 30 -35% of
overall execution time on coherent read
stalls, which are more prevalent as more
users try to access data[2].

 It is our aim to locate the source of these
transfers by observing when they are
occurring and then mapping these instances
back to a invocation in the program.

II. Background

Over the past decade, much research has
been done to improve the efficiency of

databases, yet very little of this has targeted,
or is even applicable to, online transaction
processing environments. Despite its
growing importance, research has been
stymied because of the immense size,
complexity, mutability, and primarily
proprietary software licensing characteristic
of OLTP databases[1]. Furthermore, most of
the work available is somewhat dated—by
computer industry standards; most of the
papers being published in the late 1990s.

Due to database schema and the mystery of
OLTP data transfers, the bit of previous
work done has been polarized. Software
scientists attempt racing the issue of cache-
to-cache data transfers by raising the degree
of multithreading. A multithreaded
microprocessor is good for “hiding” latency
misses, but the quantity of threads
considered most advantageous is disputed,
as their effects eventually level off [Figure 1,
3, 4]. The counter camp has tried improving
OLTP performance by improving the
hardware. Considered methods include
multiprocessor architecture and expanding
cache size. Yet these tactics are approaching
their limits as well, and subsequent
research has suggested a bigger cache may
only cause bigger problems [Figure 2, 1, 5].
It is our understanding that discovering
what is causing the transferring of cached
data requires an analysis of the stratum
linking hardware and software, as will its
(hopefully) eventual elimination.

What data is chosen to actually be stored on
the cache must follow at least one of two
rules. First is what is known as spatial
locality: if a piece of data is used, it is likely
that other data nearby will also be used. The
second is temporal locality: if a piece of data
is used once, it is likely to be used again.
Interestingly, of the coherency-camouflage
methods previously described, the
prefetching method utilizes spatial locality
while the snooping method relies on

temporal locality. “Multiple instruction
issue and out-of-order execution provide
only small gains for workloads such as
OLTP due to the data-dependent nature of
the computation and the lack of instruction-
level parallelism.” [4] For this reason, and
other gleaned from other research, it was
decided that temporal locality was much
more relevant for OLPT environments and,
consequently, our research. Moreover, one
way to gauge the project’s success would be
to evaluate the levels of spatial locality
present in the cache. If the data is able to

properly be stored near data that is
commonly used with it, then the relevance
of spatial locality will as a memory
reference will become moot and threads will
be able to execute their computations at
chip level.

Due to database schema and the mystery of
OLTP data transfers, the bit of previous
work done has been polarized. Software

scientists attempted to race the issue of
cache-to-cache data transfers by raising the
degree of multithreading. A multithreaded
microprocessor is good for “hiding” latency
misses, but the quantity of threads
considered most advantageous is disputed,
as their effects eventually level off [3, 4].
The counter camp has tried improving
OLTP performance by improving the
hardware. Considered methods include
multiprocessor architecture and expanding
cache size. Yet these tactics are approaching
their limits as well, and subsequent
research has suggested a bigger cache may
only cause bigger problems[1, 5]. It is our
understanding that discovering what is
causing the transferring of cached data
requires an analysis of the stratum linking
hardware and software, as will its
(hopefully) eventual elimination.

III. Methodology

III.A. Summary

To best locate the program code instigating
the transfer of cached data, the use of open-
source software would be imperative. Our
research plan entailed investigating how
and what OLTP environments were
implemented in previous papers and then
modeling our OLTP database to adhere to
these specifications.

Using the same method as above, a
standard query set would be developed and
executed N times. A trace file would be
produced during runtime. Through the use
of a specially-developed program, the trace
file will be analyzed to find where data
transfers were happening, computer
performance statistics, and, perhaps,
perform some rudimentary data mining
(see Section V, “Future Work”).

III.B. Specifications

To track program threads and memory
accesses, it is crucial for all of our software
to open-source. Our platform was the latest
version of the Linux kernel. Incidentally, for
OLTP “operating-system activity is non-
negligible, but it also does not dominate the
memory system behavior”[1]. The database
used was PostgreSQL 8.1, an open-source
database with the commercial workload to
be generated based on the Transaction
Processing Council’s Benchmark C (TPC-C).

The program written split the trace of the
running application into two pivotal pieces:
threads and addresses. Included in each
line of the trace file is a thread ID, program
counter (hexadecimal), destination address
(hexadecimal), thread size (bytes), and
whether the instruction is a read or a write.
Statistics compiled include: examining the
frequency of address, thread, and
instruction invocations, thread lifetime, and
first-access writes, etc . Understanding
first-access writes is crucial since these will
always result in false sharing, by definition.
Since this project is merely an auxiliary job
in a larger body of research, a number of
statistics that may not seem pertinent to the
task were implemented that may later prove
useful.

III.C. TPC-C, in brief

There is some animosity TPC-C. Some say
the benchmark is outdated and does not
meet the high-volume data and traffic needs
of today’s commercial world. Regardless,
the aim was to approximate how a real
OLTP environment would operate, not to
measure system performance. The TPC-C
acts as a warehouse of a wholesale
distributer of 100,000 unique items with
queries designed to mimic the order-entry
queries that would be used in any business
environment that manages and sells a
product. TPC-C includes the following mix

of five randomized, synchronized database
transactions: 43% new 10-item orders, 43%
payments, 4.3% deliveries, 4.3% stock level
checks, and 4.3% order-status checks.
Within each of these transactions are even
more stipulations, making the benchmark
thorough and all-encompassing, perfectly
adequate for a complete trace file.

IV. Implementation/Dilemmas

Trouble began with what was originally
planned as an intermediary step—dragging
a three-day task past three months. The
TPC-C standards need to be created,
requiring the use of either a database
generation/execution program or the
coding of such a program, which time
would not allow. Finding software that
could run in a Linux environment and be
synchronized with our PostgreSQL database
was difficult. Eventually, a kit released by
Open-Source Development Labs, Inc. was
found called Database Test Suite 2 (DBT2).
Unfortunately, poor documentation with
this program caused weeks of grief as we
tried to figure out how it worked.

Additionally, it was learned that due to the
vast numbers of instructions processed on a
multiprocessor machine in just a small
amount of time, an adequately-sized trace
file would be too large to process. The trace
file generation code and analysis program
would need to be modified to allow
execution lines to be buffered shortly and
piped in.

V. Future Work

Foremost, a solid and comfortable grasp be
attained on the operation and execution of
DBT2 so the TPC-C benchmark may be met
for the generation of a trace file. Also,
pattern “mining” techniques for finding
what data (memory addresses) are used

together will be beneficial in the processing
of this, and future research.

 VI. References

[1] L. Barroso, K. Gharachorloo, and E.
Bugnion. Memory System Characterization of
Commercial Workloads. In Proceedings of the
25th International Symposium on Computer
Architecture, June 1998.
http://portal.acm.org/citation.cfm?id=279363
&dl=ACM&coll=ACM

[2] T. Wenisch, S. Somogyi, N. Hardavellas, J.
Kim, A. Ailamaki, and B. Falsafi. Temporal
Streaming of Shared Memory. In Proceedings
of the 32nd Annual International Symposium
on Computer Architecture, June 2005.
http://portal.acm.org/citation.cfm?id=1080695
.1069989

[3] L. Barroso, K. Gharaschorloo, R.
McNamara, A. Nowatzyk, S. Qadeer, et al..
Piranha: A Scalable Architecture Based on
Single-Chip Multiprocessing. ACM SIGARCH
Computer Architecture News, May 2000.
http://portal.acm.org/citation.cfm?doid=3420
01.339696

[4] J. Lo, L. A. Barroso, S. J. Eggers, K.
Gharachorloo, H. Levy, and S. Parekh. An
Analysis of Database Workload Performance on
Simultaneous Multithreaded Processors. 1998.
http://portal.acm.org/citation.cfm?id=279367
&coll=portal&dl=ACM

[5] L. Barroso, K Gharachorloo, A Nowatzyk, B
Verghese. Impact of Chip-Level Integration on
Performance of OLTP Workloads. In
Proceedings of the 6th International
Symposium on High Performance
Computer Architecture, January 2000.
http://www.ri.cmu.edu/pubs/pub_4936.ht
ml

[6] B.H. Lim, R. Bianchini. Limits on the
Performance Benefits of Multithreading and
Prefetching. Sigmetrics Vol 5, Issue 96, 1996.
http://portal.acm.org/citation.cfm?id=233021
&coll=portal&dl=ACM

http://portal.acm.org/citation.cfm?id=279363&dl=ACM&coll=ACM
http://portal.acm.org/citation.cfm?id=279363&dl=ACM&coll=ACM
http://portal.acm.org/citation.cfm?id=1080695.1069989
http://portal.acm.org/citation.cfm?id=1080695.1069989
http://portal.acm.org/citation.cfm?doid=342001.339696
http://portal.acm.org/citation.cfm?doid=342001.339696
http://portal.acm.org/citation.cfm?id=279367&coll=portal&dl=ACM
http://portal.acm.org/citation.cfm?id=279367&coll=portal&dl=ACM
http://www.ri.cmu.edu/pubs/pub_4936.html
http://www.ri.cmu.edu/pubs/pub_4936.html
http://portal.acm.org/citation.cfm?id=233021&coll=portal&dl=ACM
http://portal.acm.org/citation.cfm?id=233021&coll=portal&dl=ACM

[7] Wikipedia contributors, "CPU cache,"
Wikipedia, The Free Encyclopedia,
http://en.wikipedia.org/w/index.php?title=
CPU_cache&oldid=92419183

[8] M. Martin, D. Sorin, A. Ailamaki, A.
Alameldeen, R. Dickson, et. al. Timestamp
Snooping: An Approach for Extending
SMPs. ACM SIGPLAN Notices Vol 35, Issue
11, 2000.

See Also

www.osdl.org

www.postgresql.org

www.tpc.org

http://en.wikipedia.org/w/index.php?title=CPU_cache&oldid=92419183
http://en.wikipedia.org/w/index.php?title=CPU_cache&oldid=92419183
http://www.osdl.org/
http://www.postgresql.org/
http://www.tpc.org/

