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Abstract
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A parametric classifier builds class models and clas-
sifies test points as being from classes that they are
most likely to belong to, given the class models. Over
the summer, I worked with Professor Maya Gupta
(Department of Electrical Engineering, University of
Washington), and Luca Cazzanti (Applied Physics
Laboratory, University of Washington), to develop a
parametric classifier that builds models based on only
the similarity between samples. The parametric clas-
sifier was compared to other traditional classifiers, in-
cluding near-neighbor methods, centroid-based classi-
fiers, and support vector machines.

1 Introduction

Common real-life classification problems only provide
relational information about the data, such as pair-
wise similarities. Often, information about the actual
data samples is unavailable. One exampleis a pro-
tein classification problem from Hochreiter and Ober-
mayer [2006], where the pairwise dissimilarities be-
tween protein structures is easily available, but the
description of each structure is not available. Clas-
sifiers must therefore be able to classify data given
only pairwise relational information. A new classifier
proposed by Cazzanti and Gupta is a similarity-based
parametric classifier that performs comparably well
to highly sophisticated classifiers like support vector
machines (SVMs) and traditional near neighbor ap-
proaches.
In Section 2, I will discuss various similarity metrics
and existing classification mechanisms. In Section 3, I
explain the proposed similarity-based parametric clas-
sifier. Finally, in Section 4, I will describe a few ex-
periments that compare the proposed classifier with
other existing classifiers. The results and analyses
presented in this paper are explained in detail in Caz-
zanti et al.. A draft of this paper can be requested by

email to gupta@ee.washington.edu.

2 Background

2.1 Similarity metrics

There are many ways of defining the similarity met-
ric for a dataset. The simplest similarity measure is
Hamming similarity which is the number of common
features. Tversky [1977] studied similarity from the
perspective of Psychology, and argued that how hu-
mans judge similarity is different from distance, in
that it may not be symmetric and may not follow the
triangle inequality law. Lin [1998] proposed the fol-
lowing similarity metric which has shown to be an
example of the Tversky model [Cazzanti and Gupta,
2006]:

s(A,B) = log(P (A∩B))
log(P (A∪B))

Lin’s similarity thus gives two objects a high similar-
ity value if they share a large number of features. An
entropy-related similarity metric that incorporated
information about the context was developed by
Cazzanti and Gupta [2006]. Contexual information
is important in developing a similarity metric. For
example, if a large number of objects in a set are
identical, an object that has one different feature
must be considered very dissimilar, in the given
context. In this approach, the similarity between A
and B is defined to be:

s(A,B) =
−H(R|A ∩B ∈ R) + H(R|A\B∈R)

2 + H(R|B\A∈R)
2

where H(R) is the entropy of a random object R
picked from a given distribution.
In the extreme case, if A = B, A ∩ B completely de-
scribes one and only one object, and so H(R|A∩B ∈
R) = 0. Also, since A\B = B\A = 0, the entropy as-
sociated with the other two terms is maximum. Thus



s(A,A) has a large positive value. Context is incorpo-
rated in the fact that for different distribution prob-
abilities (different P (R)s, therefore different H(R)s),
the similarity values are different.

2.2 Near Neighbors Classification

Near Neighbors is the simplest example of nonpara-
metric techniques of classification [Duda et al., 2001].
The k-nearest-neighbor classification rule is: Classify
test point t as being in the class that the maximum of
its k nearest neighbors belong to. The k nearest neigh-
bors are k training points that are closest to t. When
the points are in Euclidean space, “closest” is defined
as the minimum Euclidean distance to t. In a sim-
ilarity context, “closest” is defined as the maximum
similarity (or, minimum dissimilarity). Choosing the
value of k is crucial to the near neighbor method. A
common method used to determine the value of k is
cross-validation.
An example of the nearest-neighbor method is pre-
sented in Figure 1. The test point is in black, and its
nearest neighbors are all red points, so it is classified
as being in class “red”.

Figure 1: The test point “black” is classified as class
“red” because its nearest neighbors are points from
class “red”.

2.3 Centroid Approaches

Some classifiers attempt to model a class by deter-
mining a representative element, or prototype, for the
class. For example, the prototype (or centroid) of a
class can be the training sample that is closest (or
most similar) to all other training samples from the
class. In this way, prototypes, p1, p2, . . . pn are devel-
oped for classes, c1, c2, . . . cn. When a test point t is to
be classified, the distance between t and p1, p2, . . . pn

is calculated, and t is classified as being in class i
where d(t, pi) = arg min1≤j≤n(d(t, pj)). Thus, the
classification rule for the centroid approach is, clas-
sify test point x as being in class 1 if:

s(x, µ1) > s(x, µ2)

where µ1 and µ2 are centroids or representative ele-
ments of classes 1 and 2. An adjusted centroid ap-
proach would be,

s(x,µ1)
s̄11

> s(x,µ2)
s̄22

The normalizing factors help to include the intra-class
variance information. Figure 2 shows an example of
the centroid approach. The red and black dots rep-
resent the “centroids” of the 2 gaussian distributions.
The test point (the black dot) is closer to the blue
centroid, so it is classified as being in class 2.

Figure 2: The test point “black” is classified as class
“blue” because it is closer to the blue centroid.

2.4 Support Vector Machines

Support Vector Machines fall into the category of clas-
sifiers that attempt to model a discriminant; that is,
they find a hyperplane that separates samples from
class 1 from those of class 2 in some higher dimension
[Cristianini and Taylor, 2000]. A hyperplane is essen-
tially a plane in n dimensions. Although the concept
of SVMs in Euclidean space is fairly easy to under-
stand, the problem becomes more complicated when
the classifier has to deal with similarities, and there-
fore create hyperplanes in a similarity space. Since
similarities need not follow properties of Euclidean
space [Tversky, 1977], SVMs must first tranform the
similarity space to a manageable space. This is done
by defining a “kernel” which is an inner product to
convert points in the feature space to points in the
“manageable” higher dimensional space. The fact
that we do not have to be concerned with how to
define the higher dimensional space, just the kernel,
is what is known as the “kernel trick” [Cristianini and
Taylor, 2000]. A generalized SVM (PSVM) developed
by Hochreiter and Obermayer [2006] can use any sim-
ilarity matrix as a kernel for SVMs, and we compare
the proposed classifier to the PSVM.
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2.5 Linear/Quadratic Discriminant Anal-
ysis

Linear Disciminant Analysis methods assume that
each class has an underlying (unknown)distribution.
They form discriminant functions, that divide the
sample space into as many subspaces as there are
classes [Duin et al., 1999] [Pekalska and Duin, 2002].
In the simplest case, the discriminant function, g, is
a hyperplane. Thus, in the example (Figure 3), a test
point (black) is classified as class “red” if g(black) > 0
and class “blue” if g(black) < 0.

Figure 3: The test point “black” is classified as class
“red” because g(black) > 0.

3 Similarity Based Parametric Classi-
fier

The parametric classifier’s classification rule is classify
test point x as being in class 1 if,

P (y=1|x)
P (y=2|x) > 1

The classifier describes sample point x by 2 param-
eters: s(x, µ1) and s(x, µ2), that is the similarity of
the test point to the centroids of the 2 classes.

P (y=1|s(x,µ1),s(x,µ2))
P (y=2|s(x,µ1),s(x,µ2))

> 1

Using Bayes’ rule, the classification rule then becomes

P (s(x,µ1),s(x,µ2)|y=1)P (y=1)
P (s(x,µ1),s(x,µ2)|y=2)P (y=2) > 1

The terms P (y = 1) and P (y = 2) are known as class
priors; they are the probabilities of seeing a sample
from class 1 or 2.
An assumption made here is that, given the class la-
bel, the similarity of x to µ1 and µ2 are independent.
Thus the rule becomes

P (s(x,µ1)|y=1)P (s(x,µ2)|y=1)P (y=1)
P (s(x,µ1)|y=2)P (s(x,µ2)|y=2)P (y=2) > 1

The problem remains to compute the probabilities.
This is done in the following way: we develop a con-
straint on the probability values using the maximum
likelihood estimate (MLE) of a similarity statistic
[Duda et al., 2001] and then find the maximum
entropy solution to the constraint. It has been
shown that the maximum entropy is also the maxi-
mum likelihood with mild assumptions [Jaynes, 1998].

1. MLE constraint:
The constraint developed is the MLE estimate of
E[S12], where
s12 =

∑
x∈1 s(x, µ2).

E[S12] =
∑

s12∈S s12P (s12) = s̄12

This constraint is called a moment constraint.

2. Maximum Entropy Solution:
The maximum entropy solution to this problem
is known to have the following solution:
P (s12) = γ12exp(λ12s12).

3. Solving by Optimization:
Using the Matlab function fminsearch, the con-
straint is numerically solved to determine values
for γ and λ.

4 Experiments

The parametric classifier was compared to nearest-
neighbor methods, centroid approaches, and SVMs.
Both experiments on real datasets and simulations
were conducted on all these classifiers and the results
for three experiments have been presented below. For
a detailed explanation of all the experiments, please
refer to Cazzanti et al..

4.1 Protein Data Set

The Protein data set is a collection of pairwise sim-
ilarities for 226 proteins, and it is available at the
UCI Machine Learning repository [Newman et al.,
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1998]. Following Hochreiter and Obermayer [2006],
we used 213 proteins from four classes: “HA”(72 sam-
ples), “HB”(72 samples),“M”(39 samples), “G”(30
samples). Table 1 shows the percentage misclassifi-
cation for the four “one class vs the rest” problems
for each of the classifiers. Percentage misclassifica-
tion is the defined to be the percentage of false pos-
itives and false negatives for each class. The para-
metric classifier performs better than the other para-
metric model classifiers (nearest centroid and nearest
centroid-adjusted), but is unable to correctly distin-
guish between samples in class “HA” and “HB”.

Protein Data - Percentage Misclassification
Classifier Class Label
— HA HB M G
1 Nearest Neighbor 76.99 50.70 13.14 13.14
3 Nearest Neighbors 83.09 53.52 15.49 14.08
5 Nearest Neighbors 74.17 46.94 14.08 13.14
Nearest Centroid 29.57 41.78 0 12.20
Nearest Centroid(adj) 30.04 25.35 3.75 21.59
PSVM 1.40 1.87 0.46 0
Parametric classifier 28.63 29.10 0 1.40

Table 1: Percentage of misclassification for various
classifiers. Total number of samples = 213. PSVM
parameters: C = 100, ε = 0.2. The classification
problem that was solved was one class vs the rest using
leave-one-out cross-validation.

As is evident from the results, samples from classes
“HA” and “HB” are difficult to distinguish. The
parametric classifier fares better than all other
classifiers but the PSVM.

4.2 Solar Flare Database

The Solar Flare Database [Newman et al., 1998] con-
sists of 1066 data samples that are classified into 8
classes (0, 1, 2, 3, 4, 5, 6, 7, 8), where the class label re-
flects the number of predicted solar flares.. We com-
pared the parametric classifier to the PSVM for the
“C-Flare”, “M-Flare”, and “X-Flare” sub-datasets.
Because of the severe class bias(the ratio of number
of “0 flares” samples to number of “≥ 1 flares” sam-
ples is approximately 4 : 1 for “C-Flares”, 29 : 1 for
“M-Flares”, and 177 : 1 for “X-Flares”), we converted
the problem to a binary classification: 0 or ≥ 1. The
classifiers were compared using a Receiver Operating
Characteristics (ROC) Curve [Fawcett, 2006]. The
classifiers are run for different threshold values, and

the (false positive, true positive) points are plotted.
False positive rate is the fraction of class 2 (“≥ 1
Flares”) samples incorrectly classified as class 1 (“0
flares”). True positive rate is the fraction of class 1
samples that are correctly classified as class 1. Fig-
ure 4 shows the resulting ROC curves for the “C-
flares”. In the low false positive-low true positive rate
region, the similarity-based parametric classifier per-
forms better than the PSVM. In the upper right re-
gions (high false positive, high true positive), both the
classfiers perform comparably.
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Figure 4: ROC curves for the parametric classifier
and the PSVM for the “C labels” sub-dataset of the
Solar Flare dataset. Each point represents the (false
positive rate, true positive rate) tuple for a particular
threshold values. The threshold values for the para-
metric classifier are

4.3 Varying number of dimensions

For this simulation, we created test and training sam-
ples from an inverted distribution (αi/N for class i).
The number of test samples was 100 and the num-
ber of training samples 10. The classifiers’ error rates
were compared over different dimensions (number of
features). The parametric classifier (shown in a solid
line in Figure 5) has almost half the error rate of the
other classifiers for tests with high dimension values.

5 Discussion

The similarity-based parametric classifier proposed in
this paper acts on pairwise similarities of data. Since
it is independent of the similarity metric, and does not
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Figure 5: The Inverted distribution simulation. The
parametric classifier is shown in a solid line.

need the actual data descriptions, it is a more general
way of classifying data. The classifier performs well
when the model of a unimodal distribution in similar-
ity space is accurate. The parametric model is not,
however, flexible enough to perform well in all casis.
Nevertheless, it forms a good basis for a component
of a more flexible mixture model.
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