
The Campus Navigator
Bryan Boyd, Darla Haigler, Roger Pearce, Xinyu Tang, Akhil Patel, Nancy M. Amato

Parasol Laboratory, Department of Computer Science
Texas A&M University, College Station, Texas, 77843-3112, USA
{bcb2913, darlah, rpearce, xinyut, app6230, amato}@cs.tamu.edu

Abstract— In this paper, we discuss our implementation of
a web-based navigation system for the campus of Texas A&M
University. This application represents the campus as a roadmap;
a set of vertices and weighted edges. We designed a multilayer
roadmap for our application that supports multiple methods of
traversing each edge; in the campus environment, these methods
represent different modes of transportation (e.g. walking, driving,
riding bus). The resulting paths our navigator provides can
be composed of segments of different transportation types; for
instance, a long path across campus might include walking to
a bus stop, riding the bus, then walking from the bus to the
destination. An important benefit of our implementation is its
simplicity. When dealing with a campus as large as Texas A&M,
it is important that students, faculty, staff, and visitors be able
to easily enter queries with little/no prior knowledge of the
campus, and then clearly understand how to follow the resulting
path to their destination. Also, an intuitive interface provides an
adminstrator to easily expand/maintain the campus roadmap.
Our efforts produced a navigation application that will aid the
tens of thousands of people in finding their way around the
campus of Texas A&M University.

I. INTRODUCTION

Every year approximately 50,000 students attend Texas
A&M. A substantial percentage of these students are new-
comers to the campus and need a clear and intuitive way
to find directions to locations such as buildings, classes, and
eating establishments. Even experienced students often need
directions to seldom-visited buildings. Ideally, these directions
should be provided to students according to a chosen trans-
portation method. For example, the path of a student driving
across campus will differ greatly from the path of a student
walking across campus. Our Campus Navigator application
provides a simple, user-friendly interface to find directions
around campus for a variety of transportation types.

Issues. There already exist several commercial navigation
applications (e.g. Google Maps, Yahoo Maps, Mapquest) that
provide users with directions from one place to another.
However, these applications must search along existing roads;
they are not able to provide routes that are as precise as an
on-campus path would require. For example, a user of our
application may choose to select ”walking”, ”driving”, and
”bussing” as viable transportation options; the shortest path
might then have the user walk to their car, drive to a certain
parking lot, then take a bus to the destination. Our Campus
Navigator application enables users to obtain routes that are
much more detailed and precise than an existing commercial
application can provide.

Our implementation of a navigator application calls for
much greater complexity than the simplest version of this
type of application would. At its core, a simple navigation
application would not be difficult to create. The campus would

be represented as a Graph structure, with on-campus locations
(buildings, parking lots, etc.) stored as vertices of the graph,
and transitions between the locations (roads, sidewalks, etc.)
stored as edges between the vertices. A simple Dijkstra’s
search would then be used to calculate the shortest path.
However, the wide variety of queries and paths our application
must handle requires us to develop a much more complex
application.

Our Contribution. Our extension of a simple navigator
application facilitates two main areas of research. First, we
explore the complexity of handling shortest-path queries with
multiple ways of traversing an edge. For example, an edge
traversed by walking should have a different weight than the
same edge traversed in a car. The correct weight must be
chosen when calculating the shortest path. Also, stoplights and
traffic may alter the weight of an edge.

In addition to this, we explore the challenge of designing
an efficient and intuitive interface for both users and adminis-
trators. Our user-friendly interface is robust enough for both
inexperienced and experienced students and allows for simple
and complex queries built on top of the Google Maps API.
The administrator’s interface provides an intuitive and simple
way to manipulate edges and locations. These design goals are
detailed further throughout the paper.

II. RELATED WORK

A. Roadmap
Two previous directions of work have provided inspiration

for several of the innovative features of our application. In [1]
(Customizing...), a technique is presented to iteratively refine
roadmaps at runtime to remove edges that don’t meet query-
specific criteria. Work in [2] develops the idea of allowing
edge weights to be defined by previous edges crossed. We
apply this idea in our Route Ordering concept in section IV.

B. Google Maps Applications
The large number of existing applications using the Google

Maps API for direction/location display purposes shows that
the API is well-suited for such tasks. Here are two applications
that utilize the API in a similar way to our application:

Google Maps Route Planner. This application provides
functionality for generating custom driving routes based on
user input. The user is provided a map, and the ability to select
”landmarks” for the trip. The program then computes a path
between each of the landmarks, and displays the combined
paths to the user. The generated routes provide distance and
time data for each sub-path along the finished route.

Cell Phone Reception and Tower Search. This application
overlays cell phone reception data on top of Google Maps



satellite imagery, and displays locations of nearby cellular
towers. Here, the application retrieves the location of towers
from a database of thousands of latitude/longitude points,
similar to how our application retrives the locations of campus
landmarks from our database to display.

III. PRELIMINARIES

In this section, we will define terms and notations that we
use in the paper.

A. Graph
General Description. A graph data structure is composed

of a set of vertices V, and a set of edges E that link pairs of
vertices in the graph. In a weighted graph, a value is assigned
to each edge (the weight), representing the cost associated with
moving from one vertex to another.

Driving Roadmap. One of the most common uses for a
graph is a roadmap representation. For example, a roadmap of
the state of Texas could be modeled with a graph; each vertex
would represent a city (e.g. Austin, College Station, Dallas),
each edge would represent a highway connecting the cities,
and each edge’s weight would be the distance between the
two cities. Such instances of graphs are designated ”roadmaps”
because of their primary use: finding paths from one place to
another.

Dijkstra’s Algorithm. Our application’s main purpose is
to find shortest paths between given start and goal vertices.
For this, we use Dijkstra’s algorithm, which uses nonnegative
edge weights to solve for shortest paths in directed graphs.

Encoded Data. Additional information can be encoded
within the graph to let us fine-tune our shortest-path queries. In
our application, each edge weight is given information about
the current path request, so that different paths can be provided
based on the mode of transportation the user chooses.

IV. DESIGN AND IMPLEMENTATION

In this section, we describe the implementation of the
Campus Navigator, specifically how our method of implemen-
tation solves the issues we were faced within this problem.
First, an overview of the communication between the separate
modules of the application is discussed, along with the internal
structure of our application. Then, we detail the steps involved
in the construction of our roadmap graph, and show how
our application handles the problems that arise due to the
complexity of queries we must handle.

A. Communication
The logic within the Campus Navigator application depends

heavily on the flow of communication between three separate
units: the Web server, the database, and the Query server.
The most visible portion from the user’s point of view is the
Apache Web server, with logic written in php. When the user
submits a request (query) to be solved, the php code running
on the web server parses the request and inserts it into a table
in the database. Upon insertion, the php polls the database
periodically, looking for requests. When a request is found,
the Query server parses it into a Query object which contains
information defining the request (e.g. start and end locations,
transportation options). The Query server solves the individual

Query by running a Dijkstra’s search on the roadmap. This
result is then inserted back into the database, where the php
finds it, and returns it to the user.

B. Database
The database stores a graph representation of campus as

tables of vertice and edges, with mappings that match each
edge with a transportation type (e.g. walk, drive, bus) and
each vertex with a location type (e.g. building, department,
bus stop, parking lot). Multiple mappings can exist for a
given vertex or edge. For example, an edge representing a
street might map to both ”walk” and ”drive” transportation
types, and a vertex representing the Computer Science building
on campus would map to both ”building” and ”department”.
Upon initialization, the Query server downloads a copy of the
database into memory to speed up the roadmap construction.

C. Roadmap Construction
The Roadmap Graph representation of campus is much

more complex than a traditional roadmap application, such
as Yahoo! Maps. A campus-based roadmap application must
provide multiple modes of transportation (e.g. walk, drive,
bus) while a traditional roadmap generally provides support
for driving routes only. For example, a result path from one
side of campus to another might include walking to a bus stop,
riding the bus, exiting the bus, then walking to the destination.
Or, the path might include walking to a parking lot, driving to
another parking lot, then walking the rest of the way. These
possible results show that our roadmap must be constructed
in a different way than in a traditional roadmap application.
Below, we list the techniques that allow our roadmap to handle
these complex paths.

1) Layering: In a roadmap with only one transportation
type, roadmap construction is simple: all of the vertices and
edges in the database translate directly to the vertices and
edges in the graph. In contrast, our application has multiple
ways of traversing a single edge. If a ”walking” mapping and
a ”driving” mapping both exist for an edge in our database,
then these two traversal methods should be reflected in the
roadmap. In addition, our result paths must be able to switch
between transportation types, but only at certain positions (e.g.
parking lots, bus stops).

To solve this, we construct the roadmap in layers, where
each layer contains edges traversed by one specific mode of
transportation.

Fig. 1.



To build each layer, we simply iterate through the edge
mappings in the database, and add every edge we see that has
that layer’s mapping associated with it.

e

Fig. 2.

Next, transition edges are added where result paths can cross
between layers. For example, the result path can cross between
”foot” and ”car” layers at Parking Lot transition edges, and
between ”foot” and ”bus” layers at Bus Stop transition edges.
This type of roadmap design will constrain the result paths to
only change transportation types at designated locations.

2) Bussing Complications: Further work needs to be done
to best integrate individual bus routes into the roadmap. Just as
the result path should not jump between transportation modes
anywhere except at designated areas, it also should not jump
between bus routes. In addition, we need to ensure that the
result paths always follow bus routes in the correct direction.

Sub-layering. We futher subdivide the Bus layer into sub-
layers, where each represents a bus route.

Fig. 3.

Transition edges are added between the Foot layer and the
new sub-layer, but only at the Bus Stops that stop along this
route. Now, a Bus Stop will likely have multiple transition
edges associated with it: one for each route that stops there.

Route Ordering. In routes that include multiple closed
loops, the shortest-path search will sometimes want to expand
along a bus route backwards, instead of following it in the
correct direction. To prevent this, we associate each edge

along a bus route with an ”order” value, and ensure that
the shortest path search must follow bus route edges having
sequential ”order” values. This requires a slight modification
of Dijkstra’s algorithm; we give each edge weight in the
roadmap knowledge of the previous edge traversed, to perform
the sequential order check.

3) Edge Consolidation: A single-layer roadmap is gen-
erally composed of high-degree vertices, producing a very
interconnected graph. However, we observed that separating
our graph into multiple layers results in several unneeded
edges.

Fig. 4. Several sequential edges can be replaced by a virtual edge.

In the above figure, we see that several of these sequential
edges in the roadmap can be replaced with a virtual edge. To
do this, we identify every sequence of two-degree vertices in
the graph where none of the vertices have a mapping (building,
bus stop, etc.) associated with it. We then replace these edges
in the roadmap with a single edge having a weight equal to
the combined weight of the existing edges. After the result
path is found, any virtual edges are replaced back with their
previously existing edges to ”smooth out” the displayed result.

In our campus roadmap, the number of vertices and edges in
the graph were each reduced by approximately 30% after per-
forming this operation. This graph reduction allows Dijkstra’s
algorithm, with running time O((E + V )logV ), to execute
significantly faster.

V. INTERFACE

In this section, we describe the development of the user and
administrator interface. It is crucial that both of these interfaces
are intuitive and simple. Using the Google Maps API allowed
for visual clarity. First we will discuss the need for the user
interface to allow options for both inexperienced and experi-
enced students. Then we will explain display difficulties we
encountered and overcame with the administrator capabilities.
Lastly, we will discuss the details involved in allowing the
adding, removing, editing, and viewing of edges and vertices
from the administrator side.

A. User
The user interface is intuitive and simple for both inexperi-

enced and experienced students. It is also adaptable according
to their transportation options. The challenging issue here is



finding the easiest way for the user to understand the results
with regards to the surrounding environment. The user first
must choose a starting location. If they already know the
type of location they are starting from, then they choose it
accordingly. The types of locations available include buildings,
departments, parking lots, and bus stops. Then a dropdown list
of all A&M locations that are of this location type is displayed.
For example, if ’building’ is the type of location for which the
user is searching, then an alphabetical list of every building
on the A&M campus is produced. Allowing the user multiple
ways to choose their start and end destination locations, creates
a more user-friendly interface.

Fig. 5. The map click option allows the user to choose 1 of 5 locations
closest to the point on which the user clicked.

If the user is inexperienced and uncertain of their starting
location, they can choose ’mapclick’ as an alternative way
of selecting a start location (see Fig. 5). This allows the
user to doubleclick on the map and select one of the five
closest locations from which they clicked. In order to provide
a clear display, we use the Google Maps markers as locations
and associate a different color for each type of location. For
example, all of the department locations are purple markers.
In addition to this, when the user clicks on a marker, the
information about that location is displayed in an info window.
In the same way they select their ending destination. Finally
they check the methods of transportations that are available to
them at the time (Walking, Driving, Bussing). The user can
then select the ’find path’ button to query for the shortest path
or they have the option of clearing the display and starting
over.

B. Administrator Capabilities
1) Display Difficulties: Due to the size of the A&M campus

it is crucial for the administrator to easily manipulate the
current locations and transportation paths. Therefore, all ver-
tices and edges should be easily displayed and allow adding,
editing, and removing. However our Campus Navigator began
to run slower as we entered more campus data. Accessing the

database and displaying these vertices and edges generated a
Javascript overload that caused the application to run ineffi-
ciently. Our Campus Navigator provides a balance between
minimizing what is stored in memory (to run faster) while
maximizing what the adminstrator sees. Instead of loading
all vertices and edges automatically, we provide an intuitive
interface which allows the admin to select what types of
vertices and edges to be displayed. This allows clarity in
viewing the campus, as well as loading the page faster. The
administrator does still have the option of clearing the display
entirely or displaying all vertices and edges. In addition to
only loading and displaying the types of vertices and edges
which the administrator selects, we also only load those that
are within the bounds of the viewing screen.

2) Edge Properties: To help facilitate a simple and intuitive
interface for the administrator we allow a viewing property for
both markers and edges. When the admin clicks on a marker
the information about that location is displayed in an info
window, similar to that of the user’s display. In addition to this
the admin can double-click on an edge and an info window
of the edge’s properties can also be viewed.

3) Editing/Removing/Adding: It is important for the admin-
istrator to easily manage the system for adding, editing, and
removing markers and edges on the map. Our application
allows the admin to visit different pages according to the
purpose of their task. To facilitate easy input and modification
we have both add and edit/remove pages for markers, and
similarly for edges. The display properties mentioned above
are applied to each of these pages. To add either a marker or
an edge, the admin simply double-clicks on the map where it
is located and enters the information appropriately.

An admin can easily double-click on an edge and view an
info window associated with that edge (see figure below).
This allows the admin to easily edit the properties of that
edge. There is also the option of simply removing the edge.
However, because the edge may be associated with multiple
transporation types, the edge is only completely removed from
the database if there is no other transportation type associated
with it.

Fig. 6. An info window allows the editing and removing of the current edge.
If no edge type is associated with the current edge, it is completely removed
from the system.

We provide another way to efficiently display markers.
The Campus Navigator only shows intermediate markers at



the lowest zoom level. This improves the functionality of
our application because the intermediate markers are only
necessary to be displayed when the admin wants to add edges.

Fig. 7. The intermediate markers are displayed only when the maps is on
its highest zoom. This allows the admin to easily add edges.

VI. NAVIGATOR RESULTS

The Campus Navigator allows both simple and complex
queries using multiple transportation types and provides direc-
tions for the shortest path between two locations. Our method-
ology uses both edge weights and the capability for composite
transportation. Both of these help provide a practical approach
for inexperienced and experienced students finding their way
around campus.

A. Edge Weights
Each edge is associated with a weight which allows for the

complexity of handling shortest-path searches with multiple
ways of traversing an edge. Weights are dependent upon the
time it takes to traverse the edge. For instance, a driving path
will have a smaller weight than a walking path (See Fig. 8).

B. Composite Transportation
The Campus Navigator allows for the changing of trans-

portation types while in route, according to the user’s prefer-
ences. There is a weight associated with transitions between
two edges with different types of transportations. The time
spent at a bus stop waiting for the bus to arrive needs to factor
into the weight of selecting that edge over another, such as
walking (See Fig. 9).

VII. CONCLUSIONS

Future work on this project will focus in three main di-
rections: new navigation features, time-specific queries, and
interface improvements. Work in the area of navigation im-
provements will include both the integration of on-campus
building layouts and paths to off-campus locations (e.g. eating
establishments, hotels). These improvements will help target
a wider audience. The second area of research will allow
the adjustment of edge weights based on the time-period a
user selects. For example, available parking locations change

during large on-campus events, such as football games and
graduation. Also, additional parking lots are accessible to most
parking permits on nights and weekends. Work in this area will
provide more precise results when querying for the shortest
path, and give the user more control over their query. Lastly,
interface improvements, such as a custom set of images for
the campus, will provide greater clarity for the result path.

The Campus Navigator provides on-campus directional
queries that are more specialized than those in commercial
applications, such as Google Maps and Yahoo! Maps. The
application provides an intuitive interface that allows the user
to perform both simple and complex queries on the Texas
A&M campus, covering a variety of methods of transportation.
In addition, the design of the administrator interface facilitates
simple, yet detailed, manipulation of edges and locations.

VIII. BIBLIOGRAPHY

Simulating Protein Motions with Rigidity Analysis, S.
Thomas, X. Tang, L. Tapia, and N. M. Amato, Technical
Report TR05-008, Parasol Laboratory, Dept. of Computer
Science, Texas A&M University, Sep 2005.

A Path Planning-Based Study of Protein Folding Pathways
with a Case Study of Hairpin Formation in Protein G and L, G.
Song, S. Thomas, K. A. Dill, J. M. Scholtz, and N. M. Amato,
Proc. of the 7th Pacific Symp. on Biocomputing (PSB), pp.
240-251, Jan 2003.

Using Motion Planning to Map Protein Folding Landscapes
and Analyze Folding Kinetics of Known Native Structures ,
N. M. Amato, K. A. Dill, and G. Song, J. of Computational
Biology (JCB), 10(2):239-255, Nov 2002. Also, in Proc.
of the 6th Int. Conf. on Computational Molecular Biology
(RECOMB), pp.2-11, Apr 2002.

Fig. 8. An edge traversed by walking has a different weight than the same
edge traversed in a car.



Fig. 9. In this case, taking a bus and then walking produces a more efficient
path than walking the entire way.


