
1

To Top

Using Cache Decay for Managing Replacement in a Shared
Cache

Gila Engel Professor Margaret Martonosi
Touro College Department of Electrical Engineering

Princeton University
mrm@ee.princeton.edu

1 Introduction

1.1 Problem Overview
In cache memory, there are usually multiple addresses in RAM that map to the same

cache line. While this problem is alleviated slightly by the caches being an n-way set
associative cache, it is not a complete fix. To accommodate all of the blocks of data that
need to be brought into the cache, the processor manages replacement of the cache line.
One of the primary methods used is to replace the least recently used (LRU) cache line.
However, this is not always optimal. At times, the data that is evicted is more important
than the evicting data.

Another issue arises when a processor uses simultaneous multithreading (SMT) [1].
With many different threads competing for cache memory at the same time, yet each
running its own set of instructions, one thread that is more aggressive may end up
grabbing a very large portion of the cache by evicting the data belonging to the other
threads. If this aggressive thread is minimally important compared to the other threads
running, the more important threads that should ideally have a larger, or at least equal,
portion of the cache will be left with a really small one instead, or possibly evicted
completely.

1.2 Previous Related Work
Cache Decay is the concept of a cache line “decaying”, or becoming invalid for a

specified reason, time related or otherwise. We will be focusing on the time related issue.
Work has been done using cache decay to decrease static leakage. Many cache lines are
accessed a few times as soon as they are brought in to the cache, and then remain inactive
for a considerably larger amount of time than they were active, until they are evicted, and
this wastes a lot of static power. By marking a line as decayed once it has not been active
for a certain amount of time (determined by the decay interval), it becomes invalid and
the power can be blocked from the decayed line, conserving all of that electrical energy.
[2]

1.3 Goals
Cache Decay can be taken further, and implemented with regard to simultaneous

multithreading. We propose to utilize cache decay to improve cache sharing policies for
managing cache replacements in chip multiprocessors.

We envision a processor in which instead of evicting the cache line that was least
recently used, a cache line that was decayed will be replaced instead. Each processor will
have a different decay interval, and when the cache lines that had been brought in by that

2

To Top

Figure 1. Diagram
of 2-level cache
hierarchy on a
Chip Multi
Processor.

processor have not been accessed for an amount of time equal to, or exceeding its
interval, they decay. Using this, the more important processes can have a higher decay
interval, which will prevent their cache lines from being evicted as frequently as others
with a lower decay interval.

1.4 Contribution
Our research shows an average of a 3% performance improvement due to using cache

decay for managing replacement of cache lines.

2. Methodology and Modeling

2.1 Simulator
We used the simulator Parallel Turandot CMP (PTCMP) [3], which models the

performance and power of a multi-core PowerPC™ processor, with a two way SMT core.
It is programmed with POSIX threads to attain lightweight synchronization and parallel
speedup. PTCMP can test various combinations of CMP and SMT configurations
without limits on the number of cores.

We simulate a chip multiprocessor with 1 to 8 cores and a 2-level cache hierarchy.
Both levels of cache reside on the chip. Each core has its own L1 cache, and they share
the L2 cache. The L1 Cache is a 2-way set associative cache, with 256 indices, and a
block size of 128 bytes. The L2 Cache is a 4-way set associative cache with 16,384
indices and a block size of 128 bytes. We will be focusing on managing the replacement
in the L2 Cache. See Figure 1.

2.2 Benchmarks
We used benchmarks from the SPEC CPU2000 [4].

Chip Multi Processor

L2 Cache

P1 P2 P3 P4
L1
Cache

L1
Cache

L1
Cache

L1
Cache

3

To Top

Figure 2. The effect on the amount of
Decay Induced Misses, Total Misses,
and Total Hits as the Decay Interval
increases

3 Preliminary Work

3.1 Overview
We began working with basic cache decay in the L2 cache to see how the

performance improved by decaying cache lines with a general decay interval, regardless
of which core had brought in the data.

3.2 General Cache Decay in the L2 Cache
As a processor processes the instructions of a program, it brings in blocks of data at

once, placing it into the cache for easier access, which decreases the overhead of
retrieving the consecutive bytes of data. The next time the processor looks for that data,
it will already be on chip. However, if that data has not been accessed within a specified
period of time which is determined by parameter files, it is considered decayed, and
becomes invalid. The processor then deals with the failed retrieval as a regular miss, as if
that data had never been brought into the cache.

3.3 Results

Decay Changes

0

200,000,000

400,000,000

600,000,000

800,000,000

1,000,000,000

1,200,000,000

50
0

5,
00

0

50
,00

0

25
0,0

00

75
0,0

00

2,
50

0,
00

0

7,
50

0,
00

0

12
,50

0,
00

0

20
,00

0,
00

0

Decay Threshold

C
a

c
h

e
 A

c
c

e
s

s
e

s

Decay Induced Misses

Total Missed

Total Hit

3.3.1 Varying Decay Interval
We created a workload simulating an 8 core processor, each running 2 threads, with

each thread running a minimum of 100,000,000 instructions. We ran the workload 9
times with a different threshold interval each time, between 500 and 20,000,000, to see
the impact on the decay induced misses, total misses and total hits as the decay threshold
increased. The conclusion was that as the decay interval increased, the amount of decay
induced misses and total misses decreased, while the amount of hits increased. See
Figure 2.

4

To Top

Figure 3. The comparison between
different amounts of decay induced
misses, depending on the different
benchmarks used.

Same Threshold, Different Traces

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

4,000,000

am
m

p_
ap

plu
.s

h

ap
si_

ar
t.s

h

bz
ip2

_c
ra

fty
.s

h

eo
n_

eq
ua

ke
.sh

fa
ce

re
c_

fm
a3

d.
sh

ga
lge

l_
ga

p.
sh

gc
c_

gz
ip.

sh

luc
as

_m
cf.

sh

m
es

a_
m

gr
id

.sh

pa
rs

er
_p

er
lbm

k.s
h

six
tra

ck
_s

wim
.sh

tw
olf

_v
or

te
x.

sh

vp
r_

wup
wise

.s
h

Trace

T
o

ta
l D

ec
ay

s

3.3.2 Varying Benchmarks
We created another 13 workloads, each simulating a 1 core processor, and running 2

threads, with each thread running a minimum of 70,000,000 instructions. Each workload
ran using the same decay interval (an interval of 250,000), to see how varied the amount
of decays could be, depending on the different benchmarks used. From these workloads,
there was a large amount of diversity with regard to the amount of decays, from
approximately 41,000 to 3,437,000. See Figure 3.

4 Managing Replacement with Cache Decay

4.1 Our Addition
We envision a processor in which cache decay is used to enhance managing

replacement in the L2 cache. Previously, a popular method has been to replace the LRU.
In our processor, we will try to replace only cache lines that have decayed. If there are
multiple decayed lines, we use the LRU of those, and if there are no decayed lines, we
replace the LRU for that index. Another enhancement of our processor is that each core
is allotted its own decay interval. Each of the cache lines brought in by that core will be
decayed, or become invalid, only after it has not been accessed within the amount of time
delineated by that core’s decay interval.

4.2 Workloads
We considered 15 different workloads, each using 3 cores, each core running 2

threads, with each thread running a minimum of 70,000,000 instructions. Each of the
threads per workload ran the same benchmark. We ran each workload twice, once with
decay and once without.

5

To Top

Figure 4. The comparisons of IPC for each
workload.

Figure 5. The effect of using different
benchmarks on decay induced misses,
total misses, and total hits.

Comparison between Instructions Per Cycle with or without
Decay

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

ar
t_6

.sh

am
m

p_
6.sh

ap
plu

_6
.s

h

ap
si_

6.
sh

bz
ip2

_6
.sh

cr
af

ty_
6.

sh

eo
n_

6.
sh

eq
ua

ke
_6

.sh

fa
ce

re
c_

6.
sh

fm
a3d

_6
.sh

ga
lgel_

6.
sh

ga
p_

6.
sh

gc
c_

6.s
h

gz
ip_

6.
sh

luc
as

_6.
sh

Workload

IP
C With Decay

Without Decay

4.3 Results
Upon comparing the IPC for each workload of those run with decay against those run

without, we concluded that the effect of using cache decay for managing cache
replacement, on average, improves performance slightly. Out of the 15 traces that we ran,
66% of them had a higher IPC when using cache decay than not, with an average of a
3.07% IPC increase. See Figure 4.

Comparison between Decays, Misses, and Hits of Different
Workloads

0

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

60,000,000

ar
t_

6.
sh

am
m

p_
6.

sh

ap
pl

u_
6.

sh

ap
si_

6.
sh

bz
ip

2_
6.

sh

cr
af

ty
_6

.s
h

eo
n_

6.
sh

eq
ua

ke
_6

.sh

fa
ce

re
c_

6.
sh

fm
a3

d_
6.

sh

ga
lg

el_
6.
sh

ga
p_

6.
sh

gc
c_

6.
sh

gz
ip

_6
.s

h

lu
ca

s_
6.

sh

Workload

A
m

o
u

n
t

Decay Induced Misses
Total Misses
Total Hits

The second comparison we looked at was how different workloads reacted differently
with regard to decay induced misses, total misses, and total hits despite their having the
same decay interval of 500,000. See Figure 5.

2.4.1 More Graphs
Refer to Appendix 1 for the graphs of all of the results of the workloads.

3 Conclusion
For our programs that we ran there was a modest performance improvement when

using cache decay for managing replacement in shared caches. For much larger

6

To Top

ammp_6

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

7,000,000

Decay Induced Misses Total Misses Total Hits

A
m

o
u

n
t 50,000

500,000

10,000,000

programs, we imagine that there could be significant benefits from implementing cache
decay to enhance managing cache replacement. That is something that is open to future
scientific research.

References

[1] D. M. Tullsen, S. J. Eggers, H. M. Levy. Simultaneous
multithreading: maximizing on-chip parallelism. In ISCA, June 1995
[2] S. Kaxiras, Z. Hu, M. Martonosi. Cache Decay: Exploiting Generational
Behavior to Reduce Cache Leakage Power. In ISCA, 2001
[3] J. Donald, M. Martonosi. Power Efficiency for Variation-Tolerant MultiCore
Processors. In ISPLED, 2006
[4] The Standard Performance Evaluation Corporation. WWW Site.
http://www.spec.org, Dec. 2000

Appendix 1
Following are graphs, each depicting the results of a simulation of a 3 core processor,
with each core running 2 threads. All of the threads per workload ran the same SPEC
CPU2000 benchmark. Each core had a different decay threshold, one of 50,000, one of
500,000 and one of 10,000,000.

7

To Top

applu_6.sh

0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

Decay Induced Misses Total Misses Total Hits

A
m

o
u

n
t 50,000

500,000

10,000,000

art_6.sh

0

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

60,000,000

70,000,000

Decay Induced Misses

A
m

o
u

n
t 50,000

500,000

10,000,000

Total Misses Total Hits

8

To Top

apsi_6.sh

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

Decay Induced Misses Total Misses Total Hits

A
m

o
u

n
t 50,000

500,000

10,000,000

bzip2_6.sh

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

7,000,000

Decay Induced Misses Total Misses Total Hits

A
m

o
u

n
t 50,000

500,000

10,000,000

9

To Top

crafty_6.sh

0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

Decay Induced Misses Total Misses Total Hits

A
m

o
u

n
t 50,000

500,000

10,000,000

eon_6.sh

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

Decay Induced Misses Total Misses Total Hits

A
m

o
u

n
t 50,000

500,000

10,000,000

10

To Top

equake_6.sh

0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

14,000,000

Decay Induced Misses Total Misses Total Hits

A
m

o
u

n
t 50,000

500,000

10,000,000

facerec_6.sh

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

7,000,000

8,000,000

9,000,000

10,000,000

Decay Induced Misses Total Misses Total Hits

A
m

o
u

n
t 50,000

500,000

10,000,000

11

To Top

fma3d_6.sh

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

Decay Induced Misses Total Misses Total Hits

A
m

o
u

n
t 50,000

500,000

10,000,000

galgel_6.sh

0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

Decay Induced Misses Total Misses Total Hits

A
m

o
u

n
t

50,000

500,000

10,000,000

12

To Top

gap_6.sh

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

4,000,000

4,500,000

5,000,000

Decay Induced Misses Total Misses Total Hits

A
m

o
u

n
t 50,000

500,000

10,000,000

gcc_6.sh

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

30,000,000

Decay Induced Misses Total Misses Total Hits

A
m

o
u

n
t 50,000

500,000

10,000,000

13

To Top

gzip_6.sh

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

Decay Induced Misses Total Misses Total Hits

A
m

o
u

n
t 50,000

500,000

10,000,000

lucas_6.sh

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

4,000,000

4,500,000

5,000,000

Decay Induced Misses Total Misses Total Hits

A
m

o
u

n
t 50,000

500,000

10,000,000

