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1  Introduction

1.1  Problem Overview
In cache memory, there are usually multiple addresses in RAM that map to the same 

cache line.  While this problem is alleviated slightly by the caches being an n-way set 
associative cache, it is not a complete fix.  To accommodate all of the blocks of data that 
need to be brought into the cache, the processor manages replacement of the cache line.  
One of the primary methods used is to replace the least recently used (LRU) cache line.  
However, this is not always optimal.  At times, the data that is evicted is more important 
than the evicting data.  

Another issue arises when a processor uses simultaneous multithreading (SMT) [1].  
With many different threads competing for cache memory at the same time, yet each 
running its own set of instructions, one thread that is more aggressive may end up 
grabbing a very large portion of the cache by evicting the data belonging to the other 
threads.  If this aggressive thread is minimally important compared to the other threads 
running, the more important threads that should ideally have a larger, or at least equal, 
portion of the cache will be left with a really small one instead, or possibly evicted 
completely.  

1.2  Previous Related Work
Cache Decay is the concept of a cache line “decaying”, or becoming invalid for a 

specified reason, time related or otherwise.  We will be focusing on the time related issue.  
Work has been done using cache decay to decrease static leakage.  Many cache lines are
accessed a few times as soon as they are brought in to the cache, and then remain inactive
for a considerably larger amount of time than they were active, until they are evicted, and 
this wastes a lot of static power.  By marking a line as decayed once it has not been active
for a certain amount of time (determined by the decay interval), it becomes invalid and 
the power can be blocked from the decayed line, conserving all of that electrical energy. 
[2]

1.3  Goals
Cache Decay can be taken further, and implemented with regard to simultaneous 

multithreading.  We propose to utilize cache decay to improve cache sharing policies for 
managing cache replacements in chip multiprocessors. 

We envision a processor in which instead of evicting the cache line that was least 
recently used, a cache line that was decayed will be replaced instead.  Each processor will 
have a different decay interval, and when the cache lines that had been brought in by that 
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Figure 1. Diagram 
of 2-level cache 
hierarchy on a 
Chip Multi 
Processor.

processor have not been accessed for an amount of time equal to, or exceeding its 
interval, they decay.  Using this, the more important processes can have a higher decay 
interval, which will prevent their cache lines from being evicted as frequently as others 
with a lower decay interval. 

1.4  Contribution
Our research shows an average of a 3% performance improvement due to using cache 

decay for managing replacement of cache lines.

2. Methodology and Modeling

2.1  Simulator
We used the simulator Parallel Turandot CMP (PTCMP) [3], which models the 

performance and power of a multi-core PowerPC™ processor, with a two way SMT core.  
It is programmed with POSIX threads to attain lightweight synchronization and parallel 
speedup.  PTCMP can test various combinations of CMP and SMT configurations 
without limits on the number of cores.  

We simulate a chip multiprocessor with 1 to 8 cores and a 2-level cache hierarchy.  
Both levels of cache reside on the chip.  Each core has its own L1 cache, and they share 
the L2 cache.  The L1 Cache is a 2-way set associative cache, with 256 indices, and a 
block size of 128 bytes.  The L2 Cache is a 4-way set associative cache with 16,384 
indices and a block size of 128 bytes.   We will be focusing on managing the replacement 
in the L2 Cache.  See Figure 1.

2.2  Benchmarks
We used benchmarks from the SPEC CPU2000 [4].
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Figure 2. The effect on the amount of 
Decay Induced Misses, Total Misses, 
and Total Hits as the Decay Interval 
increases

3  Preliminary Work

3.1 Overview
We began working with basic cache decay in the L2 cache to see how the

performance improved by decaying cache lines with a general decay interval, regardless 
of which core had brought in the data.

3.2 General Cache Decay in the L2 Cache
As a processor processes the instructions of a program, it brings in blocks of data at 

once, placing it into the cache for easier access, which decreases the overhead of 
retrieving the consecutive bytes of data.  The next time the processor looks for that data, 
it will already be on chip.  However, if that data has not been accessed within a specified 
period of time which is determined by parameter files, it is considered decayed, and 
becomes invalid.  The processor then deals with the failed retrieval as a regular miss, as if
that data had never been brought into the cache.

3.3 Results

Decay Changes
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3.3.1 Varying Decay Interval
We created a workload simulating an 8 core processor, each running 2 threads, with 

each thread running a minimum of 100,000,000 instructions.  We ran the workload 9 
times with a different threshold interval each time, between 500 and 20,000,000, to see 
the impact on the decay induced misses, total misses and total hits as the decay threshold 
increased.  The conclusion was that as the decay interval increased, the amount of decay
induced misses and total misses decreased, while the amount of hits increased.  See 
Figure 2.
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Figure 3. The comparison between 
different amounts of decay induced 
misses, depending on the different 
benchmarks used.
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3.3.2 Varying Benchmarks
We created another 13 workloads, each simulating a 1 core processor, and running 2 

threads, with each thread running a minimum of 70,000,000 instructions.  Each workload 
ran using the same decay interval (an interval of 250,000), to see how varied the amount 
of decays could be, depending on the different benchmarks used.  From these workloads, 
there was a large amount of diversity with regard to the amount of decays, from 
approximately 41,000 to 3,437,000.  See Figure 3.

4 Managing Replacement with Cache Decay

4.1  Our Addition
We envision a processor in which cache decay is used to enhance managing 

replacement in the L2 cache.  Previously, a popular method has been to replace the LRU. 
In our processor, we will try to replace only cache lines that have decayed.  If there are 
multiple decayed lines, we use the LRU of those, and if there are no decayed lines, we 
replace the LRU for that index.  Another enhancement of our processor is that each core 
is allotted its own decay interval.  Each of the cache lines brought in by that core will be 
decayed, or become invalid, only after it has not been accessed within the amount of time
delineated by that core’s decay interval.

4.2  Workloads
We considered 15 different workloads, each using 3 cores, each core running 2 

threads, with each thread running a minimum of 70,000,000 instructions.  Each of the 
threads per workload ran the same benchmark.  We ran each workload twice, once with 
decay and once without.
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Figure 4. The comparisons of IPC for each 
workload.

Figure 5. The effect of using different 
benchmarks on decay induced misses, 
total misses, and total hits.
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4.3 Results
Upon comparing the IPC for each workload of those run with decay against those run 

without, we concluded that the effect of using cache decay for managing cache 
replacement, on average, improves performance slightly. Out of the 15 traces that we ran, 
66% of them had a higher IPC when using cache decay than not, with an average of a 
3.07% IPC increase.  See Figure 4.  

Comparison between Decays, Misses, and Hits of Different 
Workloads
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The second comparison we looked at was how different workloads reacted differently
with regard to decay induced misses, total misses, and total hits despite their having the 
same decay interval of 500,000.  See Figure 5.

2.4.1 More Graphs
Refer to Appendix 1 for the graphs of all of the results of the workloads.

3 Conclusion
For our programs that we ran there was a modest performance improvement when 

using cache decay for managing replacement in shared caches.  For much larger 
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programs, we imagine that there could be significant benefits from implementing cache 
decay to enhance managing cache replacement.  That is something that is open to future 
scientific research.
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Appendix 1
Following are graphs, each depicting the results of a simulation of a 3 core processor, 
with each core running 2 threads.  All of the threads per workload ran the same SPEC 
CPU2000 benchmark.  Each core had a different decay threshold, one of 50,000, one of 
500,000 and one of 10,000,000.
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