
Through the Looking Glass: Teaching CS0 with Alice
Kris Powers
Tufts University

161 College Ave.
Medford, MA 02155
+1 (617) 627-4924

Kris.Powers@tufts.edu

Stacey Ecott
Tufts University

161 College Ave.
Medford, MA 02155
+1 (617) 627-2225

Stacey.Ecott@tufts.edu

Leanne Hirshfield
Tufts University

161 College Ave.
Medford, MA 02155
+1 (617) 627-2225

Leanne.Miller@tufts.edu

ABSTRACT
This work analyzes the advantages and disadvantages of using the
novice programming environment Alice in the CS0 classroom.
We consider both general aspects as well as specifics drawn from
the authors’ experiences using Alice in the classroom over the
course of the last academic year.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer Science Education

General Terms
Human Factors, Languages.

Keywords
novice programming environments

1. INTRODUCTION
Learning to program is hard. And so for the last few decades,
computing educators have developed a myriad of environments to
help novices learn to program. Currently, a veritable barrage of
these environments is in development. Many of these
environments are not well studied, and few make any impact
outside of the circle of influence of the developer. Among the few
exceptions to this is the 3-D graphical programming environment,
Alice.

Alice is in the “microworld” category of novice programming
tools which generally allow storytelling to be incorporated into
programming. This approach is captured by numerous novice
programming environments, dating to back to the original Karel
the Robot [21] and continuing today with environments like Jeroo
[14], Greenfoot [12], and Alice [1]. In microworld environments,
students create characters and program their behavior. Alice is
unique amongst such environments in several ways. It supports
programming of a rich collection of 3-D characters that can be
chosen from a sizeable library, and supports graphical drag and
drop programming in which syntax errors cannot occur.

The importance of Alice amongst the CS community cannot be
denied. It has been the topic of over $3.5 million in grant
development [7], and has been the subject of related efficacy

studies. Alice has had a consistent SIGCSE and ITiCSE presence
over much of the last decade in paper presentations, posters, and
workshops. The most recent summer 2006 NSF workshop for
teaching with Alice drew a crowd of over 120 educators, drawn
from academic institutions ranging from high schools to research
universities [7]. Over 100 academic institutions have tried Alice
and 3 textbooks for Alice have been published in the last year.

In the fall 2005 and spring 2006 semesters we decided to teach
our CS0 course using Alice. The course was a three semester-hour
class with an additional 75-minute closed lab component. The
class attracted a bi-modal student population, with a
subpopulation of stronger students drawn from prospective CS
majors and mathematics majors and a subpopulation of weaker
students who selected the course as a “soft option” for fulfilling
their math distribution requirement. In each semester the course
was taught as a purely programming course (i.e., no breadth
components were included, as is sometimes done in CS0). As will
be discussed more fully later in the paper, two different
approaches to using Alice were employed in each semester.

Since Alice has received such noteworthy attention, many CS
educators are currently using, or are considering using the
environment. While a wealth of publications praise the Alice
environment, we address some important issues that should be
considered when using Alice. We believe that Alice has the
potential to be an incredible teaching tool. Our hope is that
combined wisdom of many Alice educators can influence the
development of Alice, make future uses of Alice more effective,
and move Alice toward its potential. In this paper we give an
overview of the Alice environment, share our experience of
incorporating Alice into the CS classroom, and we discuss issues
in transitioning from Alice to a high-level language such as Java
or C++.

2. BACKGROUND
Alice is a learner-centered environment that facilitates
programming by allowing the direct manipulation of objects using
a limited set of simple commands. Alice allows users to
manipulate 3D objects in a 3D world in order to create program
animated movies. Information about each individual object can
be accessed and manipulated independently of any written code.
Simple stories can be realized by choosing an object in the world,
such as an ice skater, and calling one of its methods, like Skate().
Students can incorporate this method call in their program using a
graphical interface in which they drag the name of the method
from the object and drop it into the calling method at a valid
location as is done in Figure 1 (a main world method is provided,
and is called when a program is run). This textual representation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.

Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

is designed to allow lines of code to read as sentences describing
the action an object is to take.

Figure 1 – The Alice Environment

Alice’s drag and drop interface separates learning syntax from
learning semantics. In fact, Alice forces students to create code
that is always in a runnable state. For example, when a student
drags an if-statement into the program code Alice forces the
student to choose an appropriate Boolean value for the condition.
Students will only be able to drag and drop valid relational
statements into the if-statement condition in subsequent coding.
The structure, therefore, does not allow for syntax errors, only
errors in logic.

3. OBSERVATIONS AND ANALYSIS
The Alice website claims that Alice “addresses both the
mechanical and sociological barriers that currently prevent many
students from successfully learning to program a computer”. In
this section we provide feedback on Alice’s strengths and
weaknesses at addressing these barriers based on our experiences
teaching our two Alice CS0 courses.

3.1 Addressing Sociological Barriers
Studies suggest that Alice can be used to attract and retain majors
in CS. This is especially true for at risk majors (students without
prior programming experience and/or students with weak
mathematics backgrounds) [19]. Our observations are in line with
these findings. Our Alice courses had a diverse population of
students. Some students were taking the course for their math
credit and had no direct interest in CS, others were taking the
course because they were curious about the field, and a few others
were programmers with prior programming experience.

Overall, students who came into the course with little to no
programming and math experience had positive attitudes
throughout the Alice portion of the course. When some students
made mistakes in their code, they would laugh out loud at the
resulting animation on the screen. The graphical output of the
system created a comfortable programming environment where
students could ‘play around’ with their code and visualize the
program execution. However, we noted situations when the
graphical output was frustrating to students because they wanted
to program their 3-D objects to move like their real world
counterparts. For example, students programming a rabbit to hop
across the screen expected their rabbit to move like rabbits move

in the real world. Striving to make characters move in realistic
ways is often difficult to implement in Alice. We noted that many
of our students became engrossed in the task of making their 3D
object’s movements fluid and realistic, while overlooking the
more important goal of learning basic programming concepts.

Although making naturalistic character movements may have been
slightly frustrating, Alice was successful at increasing at risk
students’ self confidence in their programming abilities. In fact,
while working with Alice several at risk students commented to
teaching assistants (TAs) that CS was not as difficult as they
thought it would be. However, when we transitioned to C++ or
Java these students became easily frustrated. These at risk
students felt that although they could program in the ‘easy’ Alice
environment, they did not really have the skills needed to do CS.
One of the primary causes of this transitional frustration involved
syntax. Since learning syntax rules can be difficult and frustrating
for new CS students, Alice enables them to focus on more
important structural programming components. While this
approach is very useful at raising students’ confidence in
programming, we found that this confidence applies mostly to
programming within the Alice environment and not to a transition
from Alice to other programming languages.

Perhaps one of the most influential factors on student attitudes is
the storytelling in Alice and other microworlds, which is
considered to be an “intrinsically motivating activity”[1].
Interestingly, a review of APAOnline, PubMed, ACM digital
library, and IS Web of Knowledge did not turn up any studies
addressing storytelling as a motivation for learning as previously
suggested [9]. In fact, in our experiences, the storytelling in Alice
may have contributed to the ‘wall’ that students hit when
transitioning to other languages. The storytelling pedagogy may
address the sociologic issues students have with programming
(not understanding relevance of CS or viewing CS as a socially
isolating educational path) [15] [17], while misleading students as
to the difficulty and nature of the discipline. While we were
encouraged to see at risk students programming with confidence
in Alice, new techniques are needed to improve student
confidence during the transition from Alice’s graphical, syntax
free, storytelling environment to object-oriented textual
programming.

3.2 Improved learning with Alice
Can Alice help students to understand programming concepts
better? This section explores ways in which Alice has been
purported to do so, and comments on the consistency of our
experience with these claims.

3.2.1 Graphical output

The 3-dimensional graphical output in Alice is appealing to
students and teachers because it shows students the output of their
program in a manner that is easy to interpret. Graphical output is
believed to help students to understand how control structures
affect the output. In particular, small changes in program control
structures can result in easily observable changes in the graphical
output, and so students can explore the effects of small,
incremental changes in their program on the output. The
perceived benefits of graphical program output have been
discussed at length (see e.g., [20] for a discussion). Of these,
Alice is particularly beneficial for helping students to understand

the large effect on program output that can result from a small
change in their program. Dijkstra [11] noted the difficulty
presented by our natural predisposition to the preconception of an
analogue world: e.g., if we press a bit harder on the gas pedal, we
go correspondingly faster in our car. Programs do not act this
way; “… a program has, unavoidably, the uncomfortable property
that the smallest possible perturbations – i.e., changes of a single
bit – can have the most drastic consequences.” [11, p. 1400]
While this behavior is obviously present is in any programming
environment, the Alice manifestations of it are graphical, obvious,
and generally laughable enough to be more closely noted by the
students.

Another proposed benefit of Alice’s graphical output is that it
enhances students’ understanding of their program state: “A 3D
animation visually embodies the notion of state. The advantage
afforded by the visual feedback of running the animation is that, at
any instance in time, the students can easily see the current state
of their program. The location of each object, its color, and its
distance to other objects are all intuitively known. There is no
need to draw abstract versions of memory maps with labeled
boxes for variables, or for tedious hand traces of variable
assignments.” [27, p. 15]

Dann argues that program state is one of the most important
features of virtual worlds [27]. In other words, “the program’s
state is immediately and always visible to the user. Each 3D
object in Alice contains its own state as a set of properties. This
eliminates the need for mutable variables… .” [27, p. 11]. But we
would argue that state variables are mutable variables! They
simply are not variables that the programmer defines. (They come
for free when an object is instantiated.) Further, whether the
programmer needs to manipulate these state variables depends on
the problem being solved.

Cooper, Dann, and Pausch use a “programmer-defined, mutable
variables late approach” in their text’s pedagogy, but this is not
inherent in Alice. For example, some programs that are very
naturally suited to Alice –like a game with a score – still require
programmer defined variables. In our first course, we followed
[the CDP text], and deferred the presentation of programmer-
defined variables until the end of the Alice portion of the course.
When divorced from the concept of variables, student
understanding of many concepts was remarkable! Loops,
conditionals, events were amazingly easy. The expected difficulty
returned the moment variables were introduced. (Whether these
topics divorced from variables would remain just as easy in
environments other than Alice is an interesting open question.)
Further, all of the difficulty of understanding and manipulating
state had yet to be tackled, and exposure to Alice does not make
this very difficult concept any easier. Since explicit and facile
manipulation of state is at the heart of programming, the extent to
which the students “know how to program” before this point in
the course is debatable.

3.2.2 Object programming in Alice
The Alice environment facilitates the objects-first approach to
teaching object-oriented programming concepts: Alice provides
an intuitive way for students to visualize objects. Every visual
entity in the Alice environment is an object, making it easy for
teachers to follow an objects-first approach to programming. An

object tree on the left side of the screen allows students to view
and manipulate all of the objects in their current environment. All
characters that students add to their world are objects. Although
teaching the concepts of objects in traditional programming
courses is difficult, we found that the concept of objects was very
easy for students to comprehend in this visual environment.
Students understood that each object had its own methods and
properties, and they were readily able to understand the
differences between object-level methods and world-level (the
Alice analogue of "static") methods.

Unfortunately, the Alice object model is neither thoroughly
implemented, nor truly object-oriented. For instance, only generic
objects can be passed as parameters. So we cannot, e.g., pass
kermit as a parameter to a method, and execute his hop()
method within that function. There is no polymorphism. There
is no way to reference the invoking object this in a class-level
method. Also, objects are never instantiated in code. The
programmer must instantiate all the objects prior to running their
code as a part of the world set up. The students can change the
code of an object, but not the code of the class. A world with 5
frogs created from the Frog class allows all the frogs to have
unique properties and methods. To create corresponding Frog
classes, say Frog1, Frog2 , etcetera, the student can save each
object. This mechanism is actually exploited in one text [CDP] to
give students the idea of inheritance. In our experience, this led
even some of our brightest students to understand inheritance as a
fancy word for the idea of cutting and pasting code from one
object to another. In short, this implementation carries the
potential to blur the relationship between objects and classes.

In the end, the visual objects in Alice made the initial shift to
object-oriented programming in C++ and/or Java easier, but the
analogy quickly broke down when students began exploring more
advanced object-oriented concepts. This aspect of Alice is
particularly disappointing as we initially thought that the object
prominence in Alice programming would be its most beneficial
feature.

3.3 Transitioning to other environments
Alice has long been advertised as a gentle way to prepare students
to learn more typical CS1 languages like C++ and Java. This
transition requires a number of significant conceptual challenges
for the students, including:

o an IDE or editing/compiling tools
o syntax and debugging syntax errors
o code translation from high-level language (HLL) to low-

level
The question arises as to what is the appropriate point for making
this transition. In this section we consider the possibilities, and
discuss the pros and cons of each.

Alice programming could be taught exclusively, in a separate
course. This approach presents the advantage of having students
learn only one programming environment. It also allows students
to gain enough experience in Alice to develop more interesting
and rewarding applications. The difficulty lies in the students’
continued studies. If the next course does not explicitly build on
the student’s Alice background, then the impact of the Alice
experience would seem to be significantly diminished. In fact, it

could even be detrimental! As was discussed in the preceding
section, the object model of Alice is not consistent with real
object-oriented environments. In our experience, if this difference
is not explicitly taught, then the Alice (mis-) conceptions of
object-oriented programming can persist. This indicates that the
transition between Alice and a HLL should be explicitly taught,
and not left to inference as a student moves through the
curriculum.

When Alice and another HLL are taught in a single course, the
decision of when to transition is significant. One possibility is to
teach all Alice first and then follow it by the HLL, as we did in the
fall of 2005. Another possibility is to intermix coverage. We
attempted this in the spring of 2006 by interspersing topical
coverage of Alice and C++. We began by covering programming
fundamentals: expressions, variables, and control constructs. First
the concepts were discussed in Alice, and then in C++. After that
we went on to functions and parameters; again, the topics were
first presented in Alice and then in C++. We are aware that other
instructors are interspersing language coverage with much finer
granularity, up to the point of demonstrating a concept in Alice
and then explaining its analogue in HLL in a single class meeting.

In the Fall ’05 semester the course was divided in half, with the
first half of the course devoted to Alice, and the second half
devoted to Java. The Alice portion of the course largely followed
the 7-week, objects-early syllabus disseminated for the Learning
to Program with Alice [9] text (except that list basics and
additional material on variables were covered toward the end, and
recursion was omitted). It is significant to note that this approach,
and indeed the textbook itself, employ a late introduction of
programmer-defined, mutable variables.

The second half of the course covered the first three chapters of
Objects First with Java: A Practical Introduction using BlueJ [3].
This text starts with a “bare bones” overview of the essentials of
the Java language, and then revisits concepts to develop deeper
understanding. Such spiral approaches are well known to enhance
learning [*] Further, this approach seemed to offer the opportunity
for students to quickly see how their Alice knowledge mapped
onto an industrial strength programming language.

The Java text is strongly based on using the BlueJ IDE. Like
Alice, BlueJ is one of the few well-studied (see, e.g. [22]) and
influential novice programming environments in current use. One
feature that seems to make BlueJ an especially good choice for
following Alice is its incorporation of an “object workbench.”
This workbench allows programmers to instantiate objects
independent of client code. The methods for an object can be
executed by right clicking on the object, and then selecting from a
pop-up menu of the methods for that object. The similarity of this
type of object manipulation in BlueJ to the experimentation and
world layout actions performed in Alice seemed to offer a
compelling conceptual stepping stone for the students.

Finally, the transition from Alice to Java was supported by the use
of an instructor provided language “lexicon.” This lexicon
showed how each Alice construct was realized Java, and was
intended to help ease the transition to the use of syntax.

The success of this transition was limited. The weaker students
were intimidated by the textual language and syntax, and seemed

to have a difficult time seeing how the Java code and the Alice
code related. Lab assignments in which students were led through
writing a Java program from an Alice program using the lexicon
did not seem to help. Even the stronger students reported “syntax
overload.” To a certain degree we believe that this was due to the
inherent organization of the Alice IDE. Object declarations, state
variables and methods are all graphically organized on the screen
with their own panes. In Java, many students were confused
about the overall organization of the code. This approach also
suffered from the timing of the introduction of user-defined
variables. Because this topic was covered at the end of the Alice
portion of the course, many students were still grappling with it as
they undertook the transition to Java. An earlier or later
introduction would have served much better. Finally, the ability
to instantiate objects on the BlueJ workbench may have hurt more
than it helped. Students expected this to be like the creation of
objects in their Alice worlds: you create objects in the IDE and
then write code to manipulate those objects. In BlueJ, however,
the workbench is only for testing. Objects manipulated in code
must be created the usual way, by being instantiated with
new().

In the Spring ’06 semester, the pedagogical approach was
dramatically altered. The course was again taught half in Alice
and half in an industrial strength language, but in this case C++
(the change in language being mostly the result of departmental
issues). Another difference is that the language coverage was
interleaved with each topic introduced in Alice and then
transitioned to C++. The hope was that such coverage would
exploit the educational concept of spacing and give students the
time to absorb the ideas of program translation and syntax. An
IDE was not employed this semester; instead, the students used
Emacs/g++ on a Unix system. To help scaffold student learning
of C++ syntax, the web based system TuringsCraft's CodeLab was
used (see turingscraft.com). Finally, this version of the
course employed an early introduction to programmer-defined
mutable variables along with the standard control constructs while
the discussion of object-oriented programming was largely
delayed. The idea was to avoid problematic advanced concepts in
object-oriented programming, and give students increased
exposure to variables and their use. A language lexicon was again
employed.

In this version of the course, many of the transition problems
persisted or were worse. Some of the better students were
resistant to switching back to Alice once they had made the initial
transition to C++. They questioned, “What was the point?”
Weaker students lost confidence sooner, with the earlier exposure
to the HLL and variables.

Finally, in general, in both semesters when our students
transitioned to either HLL we noted that too many exhibited one
of the following behaviors:

- Many students paid very little attention to syntax, often
thinking it was acceptable to hand in work that did not compile
(or that they had never attempted to compile in the first place).
Students did not recognize precision of expression as an
important aspect in computer science.

- Many students became discouraged when their programs did not
compile and they concluded that they were inadequate
programmers, even though they were able to program in Alice.

This was exacerbated by the perception of many of our students
of Alice as a storytelling environment aimed at a younger
audience. When HLL programming proved more challenging
than Alice, they concluded that their success in Alice had not
been ‘real programming’ but rather just fooling with a toy
environment designed for a younger audience.

4. CONCLUSIONS
Alice is one of the most well known microworlds currently
helping to draw generally underrepresented groups of people into
the field of computer science. While Alice has been shown to
increase confidence and retention at the university level, our
experiences at Tufts have demonstrated some pedagogical pitfalls
to the approach. The object model in Alice can easily lead to
misconceptions, and although the lack of syntax errors can raise
students’ confidence while programming in Alice, it can be
detrimental when these same students transition to C++ or Java.

Electronic Arts Inc. is currently working with the creators of Alice
at Carnegie Mellon University to produce a new version of Alice
that will incorporate characters from their popular game, The
Sims. This is expected to have a huge impact on the popularity
and accessibility of the Alice programming environment, as well
as on its future development. The new version will make it
clearer that instructors need to look beyond the excitement of
teaching objects in a 3-D environment and be sure to carefully
consider their instructional methods.

5. REFERENCES
[1] Alice, 2006. Online. Internet. Sept. 4, 2006. Available

WWW: http://www.alice.org

[2] Barker, L. Factors in Participation of Women and Minorities
in Computer Science by Type of Institution, 2003.

[3] Barnes, D. and M. Kölling, Objects First with Java: A
practical introduction using BlueJ. Prentice Hall. 2004.

[4] Carlick, A. and F. Biley, Thoughts on the therapeutic use of
narrative in the promotion of coping in cancer care.
European Journal of Cancer Care. 13(4), September 2004,
pp. 308-317.

[5] Cohoon, J., Department differences can point the way to
improving female retention in computer science, SIGCSE
Technical Symposium 1999, p. 198-202.

[6] Cooper, S., W. Dann, and R. Pausch, Alice: A 3-d tool for
introductory programming concepts. Journal of Computing
Sciences. 15(5), 2000, p. 108-117.

[7] Cooper, S., Private communication, Aug. 13, 2006.

[8] Cooper, S., W. Dann, and R. Pausch, Teaching Objects-first
In Introductory Computer Science, SIGCSE Technical
Symposium 2003, p. 191 – 195.

[9] Dann, W., Cooper, S. and Pausch, R. Learning to Program
with Alice. Prentice Hall. 2006.

[10] Doran, G. and N. Downing-Hansen, Constructions of
Mexican American family grief after the death of a child: an
exploratory study. Cultural Diversity & Ethnic Minority
Psychology. 12(2), Apr. 2006, p. 199-211.

[11] Dijkstra, E., On the Cruelty of Really Teaching Computer
Science. The Communications of the ACM, 32(12), Dec.
1989, p. 1398-1404.

[12] Greenfoot, 2006. Online. Internet. Sept. 8, 2006. Available
WWW: http://www.greenfoot.org

[13] Henriksen, P., and M. Kölling, 2004:greenfoot: combining
object visualization with interaction. OOPSLA 2004, p. 73-
82.

[14] Jeroo, 2006. Online. Internet. Sept. 8, 2006. Available
WWW: http://www.jeroo.org

[15] Kelleher, C. and R. Pausch, Lowering the barriers to
programming: A taxonomy of programming environments
and languages for novice programmers. ACM Comput. Surv.
37(2), Jun. 2005, p. 83-137.

[16] Klawe, Maria. Girls, Boys and Computers. ACM SIGCSE
Bulletin, 34(2), June 2002, p. 16-17.

[17] Koenig, J., and C. Zorn, Using Storytelling as an Approach
to Teaching and Learning With Diverse Students. Journal of
Nursing Education. 41(9), September 2002, p. 393-399.

[18] Margolis, J. and A. Fisher. Unlocking the Clubhouse:
Women in Computing. MIT Press. 2002.

[19] Moskal, B., D. Lurie, and S. Cooper, Evaluating the
Effectiveness of a New Instructional Approach, SIGCSE
Technical Symposium 2004, p. 74-79.

[20] Naps, T. (chair) Evaluating the educational impact of
visualization. A working group report of ITiCSE.
Thessaloniki, Greece, Pages: 124 – 136, 2003.

[21] Pattis, R. Karel the Robot. New York: John Wiley & Sons,
1981.

[22] Ragonis, N. and Ben-Ari, M. 2005. On understanding the
statics and dynamics of object-oriented programs. SIGCSE
Technical Symposium 2005, p. 226-230.

[23] Shashani, L. Gender differences in computer attitudes and
use among college students Journal of Educational
Computing Research. 1997.

[24] Verhallen, M., et. al. The promise of multimedia stories for
kindergarten children at risk. Journal of Educational
Psychology. 98(2), May 2006, 410-419.

[25] Cooper, S.. W. Dann, and R. Pausch. Using Animated 3D
Graphics to Prepare Novices for CS1. Computer Science
Education. 13(1), 2003.

[26] Dann, W., S. Cooper, and R. Pausch, Making the
Connection: Programming with Animated Small World.
ITiCSE 2000, p. 41-44.

