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Abstract

We built 3-D and 1-D look up tables (LUTs) to transform a user’s desired device-independent colors (CIELab)
to the device-dependent color space (RGB). We considered experimental adaptive neighborhood and estimation
methods for building the 3-D and 1-D LUTs. Methods of finding neighborhoods include: smallest enclosing
neighborhood (SEN), smallest enclosing inclusive neighborhood (SENR), natural neighbors neighborhood (NN),
natural neighbors inclusive neighborhood (NNR), and 15-nearest neighbors. The estimation techniques investigated
were: local linear regression, ridge regression, and linear interpolation with maximum entropy (LIME) weighted
regression.

Three printers were tested using combinations of the five neighborhood definitions (SEN, SENR, NN, NNR,
and 15-nearest neighbors) and three regression techniques (local linear regression, ridge regression, and LIME
weighted regression).

Index Terms

inverse color management, ICC profiles, adaptive neighborhoods, enclosing neighborhoods, smallest enclosing
neighborhood, natural neighbors, convex hull, local linear regression, ridge regression, linear interpolation with
maximum entropy (LIME) weighted regression

I. INTRODUCTION

NVERSE color management is the transformation from the user-desired colors (CIELab) to the device-

dependent color space (RGB). It allows users to specify a color they desire and find what color input
must be passed to the printer in order for the printer to print the desired color. Due to the varying nonlinear
color response of every printer, inverse color management and printer characterization has always been
a challenging problem. In this paper, we explored a lattice-based empirical method for inverse device
characterization [1]. Color management in printers is controlled by a color management module (CMM)
that uses a color management standard (created by the International Color Consortium) called ICC profiles.
The main components of the ICC profiles are a 3-D LUT and three 1-D LUTs which divide the printer
characterization process into two separate stages. The first stage, passing input CIELab values through the
3-D LUT, works toward characterizing the printer. The second stage, passing the values obtained from
the 3-D LUT through the 1-D LUT, is the calibration stage which works toward linearizing the printer
and ensuring that the neutrals remain in the neutral area. The 3-D LUT represents a grid that spans the
CIELab space and maps each point to an RGB value. Given a CIELab value, the value can be looked up
in the 3-D grid (or interpolated, if the point lies between grid points) and then calibrated with the 1-D
LUT.

Instead of measuring all possible RGB values (256 x 256 x 256), the current commercial standard is
to estimate the LUTs from a small set of training data. Bala showed that local linear regression works
well with limited training data [1]. A small set of training data presents the problems of how to find local
neighborhoods with which to estimate and once the neighborhoods are found, which estimation techniques
to use. Estimation techniques greatly depend on the size of a neighborhood. Different results are yielded
when the estimation neighborhood is too small, too large, or not close enough to the test point. It is also
important to consider the effect of a test point that falls outside of the convex hull of all training points.
In this paper, we explore different adaptive neighborhood definitions and estimation methods to build the
1-D and 3-D LUTs for ICC profiles.
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II. BACKGROUND AND PROCESS OF DEVICE CALIBRATION AND CHARACTERIZATION

To color manage a printer, one must first model the transformation from the device-dependent color
space (RGB) to the device-independent color space (CIELab). This process can be separated into two main
stages. The first stage, calibration, works toward linearizing the printer [1]. The second stage characterizes
the calibrated printer. Using the calibrated RGB values and CIELab pairs, one can create a 3-D LUT that
will translate CIELab to RGB. Although the calibration of the printer is performed after the characterization
function is applied, to derive the calibration LUT, the 1-D table is built before characterization [3]. We
will discuss the calibration method first.

A. Calibration: 1-D LUTs

The problem with uncalibrated printers is that when sending the printer a gray valued RGB (where
R = G = B = d), one would expect the printer to print a gray value that is equivalent to CIELab
(100(d/255), 0, 0). Instead, the printed value may not necessarily be neutral. Calibration fixes this problem.

We used the gray-balanced calibration method [1].

Steps to create the 1-D calibration LUT:

1) Print an RGB color chart.

2) Measure the printed colors in CIELab with a spectrophotometer to get (RGB, CIELab) pairs. The
(RGB, CIELab) pairs make up the training set (for building the 1-D LUTS).

3) Find the range of the measured luminance values. This will become the range of L* values for the test
set. Divide the range into even increments of (maximum luminance - minimum luminance)/255. This
list of (L*, 0, 0) represents the incremental shades of gray in CIELab space (between the minimum
and maximum producible luminance values measured in the training patch) that make up the test
set.

4) Use this training and test data to estimate the R’G’B’ values for each L*: For each point in the test
set, find its neighborhood of training points (using the same neighbor algorithm that will be used
for the 3-D characterization). Then use local linear, ridge, or LIME weighted regression to get the
R’G’B’ value that is expected to be equivalent to (L*, 0, 0).

5) The LUTs can then be built. Because we want R = G = B = 255(L*/100), 255(L*/100) is the
input to each 1-D LUT, and the output is the derived R’ (or G’ or B’) value.

When you input (d, d, d) in RGB, the 1-D LUTs will convert it to R’G’B’ values that correspond to

(100(d/255), 0,0) in CIELab space. See Figure 1.

R=d " 1-DLUT, [ * R’ Produces approximately
\ the CIELab color

G=d — 1-DLUT, — G’ / | PAMEE 1 —100 (@/255), 0, 0)

after printing

B=d — 1pLUT, — B

Fig. 1. Effect of the 1-D LUTs: Pass the LUTs R = G = B = d and the LUTs will return the R’G’B’ that produces a gray-tone when
sent to the printer.

B. Characterization: 3-D LUT

Once the 1-D LUTs are built you can then proceed to use these LUTs to create the 3-D LUT. First
take the inverse of the 1-D LUTs (using 1-D linear interpolation) and use these inverse tables to look up
the RGB values in the training pairs to get new (adjusted RGB, CIELab). Then use these new training
pairs and use the gridpoints as test points to built the 3-D LUT.

{Side note: Inverting the 1-D LUT works best when the values are monotonic and the range of the
1-D LUT is equal to the domain of the inverse 1-D LUT. If the 1-D LUTs’ R’G’B’ values do not span 0
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to 255, when taking the inverse of the 1-D LUT, for any estimate below the minimum value in the 1-D
LUT, set the inverse LUT value to the R (or G or B) that derives the minimum R’ (or G’ or B’) and for
any estimate above the maximum value, set it to the R (or G or B) that derives the maximum R’ (or G’
or B”).}

The end result is a 3-D LUT and three 1-D LUTs that when used together will color manage a printer.
See Figure 2.

— "R 1-DLUT, "R’

Desired . Desired CIELab
— 3DLUT ——G—*1- A * Printer —
CIELab ¢1DLUT, [ G / PR (approximately)

—B—1pLUT; B

Fig. 2. Inverse color management: To determine what RGB value to pass to a printer to get the desired value, start with the desired value
in the CIELab device-independent color space. Then use the 3-D LUT to get the RGB value. This is then passed through the 1-D LUTs to
get the new R’G’B’ value.

ITI. DEFINITIONS OF ADAPTIVE NEIGBORHOODS

In order to estimate the RGB value of a grid point in the 3-D LUT (or 1-D LUT), we must define the
local neighborhood for each test point. We consider five different methods for deriving the neighborhood
of a point: smallest enclosing neighborhood (SEN), smallest enclosing inclusive neighborhood (SENR),
natural neighbors (NN), natural neighbors inclusive neighborhood (NN), and 15-nearest neighbors (15).

SEN, SENR, NN, and NNR find neighborhoods that try to enclose the test point in the convex hull of
the neighborhood. This can potentially improve an estimate because it tries to give training information
from every side of the test point, and thus more balanced information, whereas with 15-nearest neighbors,
one may get training data only on one side of the point.

A. Smallest Enclosing Neighborhood (SEN)

Smallest enclosing neighborhood is an adaptive neighborhood that chooses the next nearest neighbor
only if it reduces the test point’s distance to the convex hull created by the neighborhood with the goal
of having the test point within the convex hull [4].

The smallest enclosing neighborhood finds the smallest (if possible) set of neighbors where the test
point can be represented by the convex combination of the neighbors such that:

> wirj = (D
J

where z is the test point, x; is the neighbor, w; is the weight, and >°, w; = 1.

Given a list of training points sorted by distance to the test point, consider each training point se-
quentially, and add the point to the neighborhood only if by adding this point, the nonconvexity of the
neighborhood (the distance from the test point to the facet of the convex hull created by the neighborhood
points) is reduced.

Steps to find the smallest enclosing neighborhood:

1) Sort the training points in order of distance to the test point.

2) Add the closest training point to the neighborhood. Call this x;.

3) Draw a hyperplane normal to the unit vector from the test point v; to z; and consider only the

points that are on the same side of the hyperplane as the test point. To do this:
a) Find the unit vector v; from the test point to this neighbor z;.
b) Project all other training points (that are not included in the neighborhood) onto this vector by
taking the dot product of the unit vector (v;) with each training point not in the neighborhood.
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For the projections that are less than the distance from the test point to x;, those points are
on the desired side of the hyperplane.

4) Define a value, custeps, to be the distance from the test point to the closest facet of the convex hull
of the neighborhood. This value will determine if a test point is close enough to the convex hull
for the algorithm to be satisfied and stop iterating. The distance from the test point to the closest
facet of the convex hull of the neighborhood is also called the nonconvexity of the neighborhood.

5) Considering only the points on the close side of the hyperplane, add the new closest training point
to the neighborhood.

6) Find the nonconvexity of the neighborhood. If the nonconvexity is less than custeps, stop iterating.
This will be the neighborhood.

7) Use the hyperplane created to eliminate the training points on the far side from consideration.

8) Add the new closest training point to the neighborhood.

9) Repeat steps 6-9 until the test point is in the convex hull or cannot get any closer to the convex
hull by adding any more neighbors. If the test point is outside of the hull of the training points,
eventually the hyperplane will eliminate all other training points and there will be nothing to add
to the neighborhood that will help the point get closer to the convex hull. Stop iterating and take
this as the neighborhood.

Make sure that the number of neighbors is at least d + 1 where d is the dimension of the data. If it is
less than d + 1, then add to the neighborhood the next closest training points until there are d + 1 points
in the neighborhood.

We used two variations of SEN and SENR. In one version, we required the neighborhood to have a
minimum of four neighbors (the fewest number of points we can have and still perform a regression).
If there were less than four neighbors, then the training point closest to the test point but not previously
included in the neighborhood was added to the neighborhood. This was repeated until there were at least
4 neighbors. Tests using this algorithm were called SEN4 and SEN4R. The other version of SEN and
SENR required the neighborhood to have a minimum of fifteen neighbors. These tests were called SEN15
and SEN15R.

B. Smallest Enclosing Inclusive Neighborhood (SENR)

Smallest enclosing inclusive neighborhood (SENR) is an adaptive neighborhood that chooses neighbors
as defined by SEN and then includes all other training points that are within the radial sphere created
by the farthest SEN point. In other words, given the set of smallest enclosing neighborhood indices 7,
include training point z; in the neighborhood if

lg — zjll2 < ?g%f“g—xin- 2)

where ¢ is the test point.

C. Sibson’s Natural Neighbors Neighborhood (NN)

Sibson’s natural neighbors neighborhood (NN) is an adaptive neighborhood that generates the Voronoi
tessellation (where every location in space is assigned to the closest point in the training set or the test
point) and uses it to determine the boundary of each point’s region, marked by the areas that are equally
close to two or more training or test points. The training points whose regions are adjacent to the test
point’s region are the points that make up the neighborhood [5]. On average, if a point is within the
convex hull of the training points, the neighborhood size is expected to be around 15. See Figure 3.
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Fig. 3. Graph of the number of natural neighbors of a point (located at the origin) given a randomly generated set of points available. For
each number of available points, 50 random sets were used and the number of natural neighbors was averaged over 50. As the number of
available training points increased, the size of the natural neighbors neighborhood for a test point asymptotically converged to 15.

D. Sibson’s Natural Neighbors Inclusive Neighborhood (NNR)

Sibson’s natural neighbors inclusive neighborhood (NNR) is an enclosing, adaptive neighborhood that
finds the natural neighbors and includes all other training points that are within the radial sphere created
by the farthest natural neighbor points. In other words, given the set of natural neighbors neighborhood
indices J,,, include training point z; in the neighborhood if

!m—xMzég%Wg—%M- (3)

where ¢ is the test point.

E. 15-Nearest Neighbors (15)

15-nearest neighbors (15) thats the 15 training points closest to the test point. Bala recommends 15
neighbors as a sufficient neighborhood size for estimation [3].

IV. ESTIMATION TECHNIQUES

Three regression techniques were used to estimate the CIELab values at each gridpoint in the 3-D
LUT: local linear regression, ridge regression, and LIME weighted regression. All regression techniques
estimate R, G, and B independently.

A. Local Linear Regression

Local linear regression fits the least-squared error hyperplane to some local neighborhood of each
gridpoint of the 3-D LUT. For a gridpoint g € Lab, local linear regression finds the [3;, €1, 32, €2, O3,
and e3 such that

R = 3Tg+ea (4)
G = Blgte

A

B = B37g+es,

where (3;,e; are regression coefficients of a least-squares hyperplane fit to the neighborhood samples
{z;, R;}, (2, €2 are the vector of regression coefficients of a least-squares hyperplane fit to the neighbor-
hood samples {z;, G;}, and [35, 3 are the vector of regression coefficients of a least-squares hyperplane fit
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to the neighborhood samples {z;, B;}. The algorithm minimizes the mean squared error (for each channel
separately):

(1, &1] = argmin 37 (fu(er;) - R;)? (5)
j

(B2, €5] = arg %1(132 (falz;) — Gy)?

[Bs, €3] = argl}?(igz (fs(z;) — By)?

(6)

where x;[1], x;[2]|, and z;[3] are the L*, a*, and b* channels for neighbor z;; fi(x;) is the estimated
value 2 and R; is the measured value of R for neighbor j; fo(z;) is the estimated value G and G; is the
measured value of G for neighbor j; f3(z;) is the estimated value B and B; is the measured value of B
for neighbor j.

*

B. Ridge Regression

Ridge regression is similar to local linear regression, but it applies a penalty to solutions whose estimates
are too steep. This effectively shrinks the coefficients of the regression so that the square of the linear
regression coefficients is minimized:

N

2
A . p p
fBridee — re mﬂin > (yi —Bo—> xijﬁj) +AY G ™
j=1 Jj=1

=1

where a larger A\ results in more stabilized coefficients [6].

C. LIME Weighted Regression

The goal of the LIME algorithm is to use linear interpolation and pick weights on the values to preserve
the maximum entropy. Simple linear interpolation can yield multiple solutions that assign different weights
to surrounding neighbors but still fall within the parameters given. The solution is not unique. With
maximum entropy, one tries to choose the solution that will yield the most uniform weights. This is

represented by

& 2

ijmj — X

=1

+ AH (w) 8)

arg min
g w

2

where a large A results in more evenly weighted neighbors and H (w) represents the Shannon entropy of
w [4].

The weights for each neighbor are then used to weight the errors when fitting a hyperplane that has
the minimum total weighted squared error. Then, the fitted hyperplanes (from ridge regression) are used
to estimate the R, G, and B values.

V. EXPERIMENTS

Experiments were run on three printers: Epson Stylus Photo 2200 (ink jet), Epson Stylus Photo R300
(ink jet), and Ricoh Aficio 1232C (laser). The Epson Stylus Photo 2200 experiments were run using
Epson ink on Epson Matte Heavyweight Paper. The Epson Stylus Photo R300 experiments were run
using Premium Imaging Products ink (non-Epson) and on Epson Matte Heavyweight Paper. The Ricoh
Aficio 1232C experiments were run on Office Depot (generic) laser copy paper.

For each experiment: The training data, (RGB, CIELab) pairs, were obtained from a Chromix color
chart consisting of 918 color patches. The RGB value for the Chromix chart patches were read from
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the image. Then the GretagMacbeth Spectrolino spectrophotometer was used to measure the patches and
obtain the CIELab values. All CIELab reflectance measurements were taken by the spectrophotometer
without a filter and at a 2° observer angle and with D50 illumination.

Then the test data set was built. A 17 x 17 x 17 grid that spanned CIELab color space was used. Bala
showed that a grid more finely sampled than 16 x 16 x 16 does not afford any noticeable improvement
in accuracy [1]. The 17 x 17 x 17 grid in CIELab space where L € [0,100], a € [—100,100], and
b € [—100, 100]. For each test point, the training data was used to find a local neighborhood for the test
point. Using this local neighborhood, we used regression to estimate the RGB value of the test point. For
estimation, the ridge penalty was set to 0.1 and for LIME, the lambda variable was set to 100,000.

Once the LUTs were built, we measured the transformation performance. We chose AEj, error [1] as
the metric for evaluating the device characterization:

x 2 % 2 x 2
AE&:JAL AC AH

K5, " KeSe | KnSn ®
AL =L — L
AC* = CF — 3
Cr = \Ja? + b
Cy = Ja? +b3
AH* = VAa? + A + AC?
Aa* = aj — aj
A = b7 — B
S, =1
Se =1+ K,C,
Sy =1+ KyC4
Ky = 0.045
Ky = 015
(10)

We chose to measure error in terms of CIELab error because RGB is a device-dependent color space
and a change in the R channel may not be equal to a change of the same size in the G' channel and yet the
RGB error of these different points could yield the same value. CIELab error gives a more perceptually
meaningful value[2].

To find the error, we first generated new test data. We considered only colors that are obtainable by the
printer (i.e within its gamut). Therefore, to ensure that all randomly generated CIELab test error points
are within gamut, we generated the random points in RGB and then sent them to the printer and measured
the printed patches in CIELab. Error test data consisted of 918 patches. Of the patches, 729 patches were
randomly generated across the RGB color space (R € [0,255], G € [0,255], and B € [0,255]) and the
remaining 189 patches were randomly generated across the near-neutral colors of the color space (color
whose R, G, and B values were within 25 units of each other). Error of near-neutral values is important
because the human eye is more sensitive to these areas. The error page was measured in CIELab and the
3-D and 1-D LUTs were used to transform the test CIELab values to RGB colors. The test patches were
printed (with all software-accessible color management turned off), measured, and evaluated. 15 linear
was considered the baseline for the experiments.
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VI. RESULTS AND COMMENTS
A. Neighborhood Size

On average the SEN4 neighborhood sizes range from 4 to 30. The SEN4R neighborhood sizes range
from 4 to 60. SEN15 has 15 to 40 neighbors, while SEN15R has 15 to 150 neighbors. Natural neighbors
can have around 7 to 160 and NNR can have 8 to 918 neighbors. 15 nearest neighbors will always have
a neighborhood size of 15. See Figure 4.

Fraquenoy of Number of Neighbors for Epson 2200 Printer

SENG
SENAR
SEN1S
SEN15R
NN
NNR

15

Frequency
=

b

2

(i

Mumber of Neighbors

Fig. 4. Frequency of neighborhood sizes for the different neighborhood methods for the Epson Photo Stylus 2200

B. Error

We looked at average error in the 189 neutral patches, average error in the 729 nonneutral patches,
maximum error in the neutral patches, maximum error in the nonneutral patches, and overall average error
of all patches. See Tables I, II, and III.

TABLE I
ERRORS FROM THE EPSON PHOTO STYLUS 2200

Neighborhood | Estimation Neutral Nonneutral Neutral Nonneutral Overall

method Avg. Error | Avg. Error | Max. Error | Max. Error | Avg. Error

SEN4 Linear 2.10 3.10 5.27 27.63 2.89

Ridge 2.03 2.28 4.00 1291 2.23

SEN4R Linear 1.84 2.33 4.29 25.77 223

Ridge 1.78 2.23 4.19 9.19 2.14

SEN15 Linear 2.00 2.38 4.52 10.09 2.30

Ridge 1.84 2.16 3.74 8.00 2.10

SENI15R Linear 1.93 2.34 4.06 7.84 2.26

Ridge 1.91 2.32 4.02 7.75 2.23

NN Linear 1.79 2.41 3.90 9.82 2.29

Ridge 1.60 2.20 3.72 9.25 2.07

NNR Linear 1.61 2.46 3.80 8.02 2.28

Ridge 1.42 2.46 3.23 8.21 2.25

15 Linear 1.56 2.43 3.76 14.60 2.25

Ridge 1.65 243 3.81 13.76 2.27

LIME 1.37 2.40 3.31 14.22 2.19

We also categorized errors into level of perceivable differences (subjective) where errors from 0-
4=Unperceivable, 4.01-8=Slightly Perceivable, 8.01-13=A Shade Different, 13+=Different Color. See Fig-
ure 5.
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TABLE 11
ERRORS FROM THE EPSON PHOTO STYLUS R300

Neighborhood | Estimation Neutral Nonneutral Neutral Nonneutral Overall
method Avg. Error | Avg. Error | Max. Error | Max. Error | Avg. Error
SEN4 Linear 1.73 2.38 12.28 22.25 2.25

Ridge 1.18 1.79 2.85 5.72 1.67
SEN4R Linear 1.02 1.67 2.71 20.50 1.54
Ridge 0.92 1.55 2.59 5.98 1.42
SENI15 Linear 1.42 1.71 4.78 577 1.65
Ridge 0.99 1.64 2.51 4.94 1.51
SENI15R Linear 0.95 1.51 2.46 4.19 1.40
Ridge 0.89 1.52 2.60 4.72 1.39
NN Linear 1.01 1.71 2.70 5.28 1.56
Ridge 1.01 1.54 2.61 4.26 1.43
NNR Linear 1.15 1.77 2.74 5.65 1.65
Ridge 1.12 1.79 2.93 5.65 1.65
15 Linear 1.02 1.55 2.46 4.93 1.44
Ridge 1.00 1.55 2.45 4.98 1.43
LIME 0.97 1.53 2.51 4.92 1.42

TABLE III

ERRORS FROM THE RICOH AFICIO 1232C

Neighborhood | Estimation Neutral Nonneutral Neutral Nonneutral Overall
method Avg. Error | Avg. Error | Max. Error | Max. Error | Avg. Error
SEN4 Linear 3.82 8.98 22.01 55.25 7.92

Ridge 3.24 433 16.50 31.94 4.10

SEN4R Linear 3.44 4.27 16.13 53.83 4.10
Ridge 3.04 3.66 17.32 20.63 3.53

SENI15 Linear 3.94 6.93 16.61 45.13 6.32
Ridge 3.31 3.84 14.73 11.31 3.73

SENI15R Linear 3.70 4.03 13.53 12.43 3.96
Ridge 3.25 3.45 12.33 10.78 3.41

NN Linear 3.83 3.74 14.83 9.96 3.76
Ridge 3.78 3.69 15.48 10.23 3.71

NNR Linear 3.28 3.74 16.04 12.96 3.65
Ridge 3.97 4.03 14.41 12.11 4.02

15 Linear 4.40 4.41 14.83 17.66 441
Ridge 421 4.16 15.16 13.00 4.17

LIME 3.95 3.75 12.74 11.02 3.79

Overall, the ink jet printers were characterized more accurately than the laser printer. For all methods,
the best results were yielded on the Epson R300. The characterization of the Ricoh had more variability.
This indicates that the Ricoh printer was more nonlinear than the Epson printers.

For the Epson 2200, SEN15 ridge, SEN4 ridge, NN ridge, and SEN15 linear performed well. 15 nearest
neighbors with linear, ridge, and LIME consistently had multiple color differences.

For the Epson R300, SEN15R linear performed the best with 917 unperceivable differences and one
slightly perceivable difference. SEN4 and SEN4R linear were the only methods that had color or shade
differences. Methods on the R300 are ranked from best performance to worst as follows: SEN15R linear,
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Fig. 5. This graph show the frequency of errors grouped by the amount of error for the Epson 2200 (left), Epson R300 (middle), and Ricoh
Aficio (right) printers. For errors 0-4=Unperceivable, 4.01-8=Slighly Perceivable, 8.01-13=A Shade Different, 13+=Different Color. Better
performance is shown by high frequencies in the unperceivable differences, lower frequencies in the slightly perceivable differences, and no
color differences.

NN ridge, 15 ridge, SEN15R ridge, 15 linear, 15 LIME, NNR linear, SEN4R ridge, SEN15 ridge, NNR
ridge, NN linear, SEN4 ridge, SEN15 Linear, SEN4R linear, SEN4 linear.

For the Ricoh printer, SEN15 ridge performed the best. It had the most unperceivable color differences,
the least perceivable and shade differences and no different colors. All SEN4 and SEN4R neighborhoods
performed around or below the baseline in terms of number of totally different colors. (SEN4R ridge
performed reasonably well in terms of unperceivable difference, but has a few different colors.) SEN15
ridge and NNR linear performed well above the baseline. NN ridge, NN linear, and 15 LIME are average.

Overall, SEN4 linear and SEN15 linear consistently performed poorly. In all printers, SEN4R linear
had a few color differences. In overall errors, NN linear, 15 linear, and 15 ridge performed poorly. 15
LIME, SEN4R ridge, SEN15R ridge and NN ridge performed well. SEN15R linear and SEN4 ridge had
a high performance variability. NNR linear and NNR ridge performs below the 15 linear baseline.

In general, medium small neighborhoods (15) tend to make closer estimates, while very small neighbor-
hoods or very large neighborhoods tend to result in bad estimates (unless tempered by ridge regression).
Mostly, ridge regression performs better than its linear regression counterpart. Error on small neighbor-
hoods (SEN4) can be improved by taking its radial neighborhood (SEN4R) instead.

VII. RELATED ISSUES

LIME weighted regression with 15 nearest neighbors seems to consistently do reasonably well. As the
LIME algorithm is specifically targeted to do well with enclosed neighborhoods, it would be interesting to
see more about how LIME does with the other neighborhoods, like SEN15 or SEN4R. Currently LIME’s
delta value for balancing the weights is at 316.2 (= /100, 000). It would be interesting to see whether
lowering the delta (and making the weights less even) would result in a better estimate.

Due to the concave curvature of the border of the printer gamut, it is possible for SEN to keep on
taking training points along the border, no matter how far the points are from the test point, if the test
point is outside of the convex hull of the training points. To avoid these large neighborhoods, it might be
good to experiment with a version of SEN that takes the change of the nonconvexity into account when
adding a point into the neighborhood. If the nonconvexity only decreases by a small amount, it may not
be worth looking for more points in the neighborhood.

VIII. CONCLUSION AND FUTURE WORK

In general, all enclosing neighborhood methods (SEN4, SEN4R, SEN15, SENI5R, NN, and NNR)
result in close estimates when the test point is well within the gamut of the printer. It is when a test point
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is outside of the convex hull of the neighbors that interesting estimates can be found. For future work,
one could consider the in- and out-of-gamut issues separately and find which combination of estimation
techniques (neighborhood method and regression) leads to a closer estimate when the test point is fully
within the convex hull of its training points and find which combination yields a better estimate when
the test point is outside of the convex hull (and probably near the boundary of the gamut). Then, by
considering whether a method can find a neighborhood whose convex hull encases the test point, one
can choose which method to use for estimation. Alternatively, one can simply find which situation, in- or
out-of-gamut, affects the overall error more, and choose the method that caters towards fixing that gamut
issue. I suspect that one of the enclosing neighborhoods and LIME weighted regression would estimate
points within the gamut accurately. 15 nearest neighbors and ridge regression may work for points around
the gamut boundary.

We explored different methods of finding neighborhoods and estimating LUTs for inverse color man-
agement. Of the different methods, we found 15 LIME, SEN4R ridge, SEN15R ridge and NN ridge to
perform well on average. In general, ridge regression on neighborhoods of around 15 tend to produce
reasonable transformations.

ACKNOWLEDGMENTS

I would like to thank my mentor, Maya Gupta at the University of Washington for continued advice
and support on my research. I would also like to thank the Computer Research Association’s Committee
on the Status of Women in Computing Research (CRA-W), the Distributed Mentor Project (DMP), and
University of Washington for the opportunity to come out to Seattle for research. Thanks also to Chromix
and Xerox for their advice.



COLOR MANAGEMENT EXPERIMENTS USING ADAPTIVE NEIGHBORHOODS FOR LOCAL REGRESSION 12

REFERENCES

[1] G. Sharma, Digital Color Imaging. Boca Raton, FL, United States of America: CRC Press LLC, 2003, ch. 5.

[2] M. R. Gupta, “Inverting color transforms.”

[3] M. R. Gupta and R. Bala, “Personal communication with Raja Bala,” 2006.

[4] M. R. Gupta, E. Garcia, and A. Stroilov, “Learning ICC profiles for custom color enhancements with adaptive neighborhoods,” IEEE
Transactions on Image Processing.

[5] A. Okabe, B. Boots, K. Sugihara, and S. Chiu, Spatial Tessellations. Chichester, England: John Wiley and Sons, Ltd., 2000, ch. 6, p.
418.

[6] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning. New York, NY: Springer, 2001, ch. 2.

[71 M. R. Gupta, R. Gray, and R. Olshen, “Nonparametric supervised learning by linear interpolation with maximum entropy,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 5, May 2006.

Erika Chin is a fourth year undergraduate at the University of Virginia, Charlottesville, VA. She will be graduating from the UVA School
of Engineering and Applied Sciences in 2007 and is expecting a BS in Computer Science and a minor in Engineering Business.



