
STAPL Graph Generator Library ∗

Harshvardhan Saransh Mittal Kelli Bacon
Olga Tkachyshyn Chidambareswaran Raman Nancy M. Amato

Parasol Lab, Dept. of Computer Science, Texas A&M University
{ananvay,olgat,chids,amato}@cs.tamu.edu

August 16, 2006

Abstract

This research aims to design a generic Graph Generator Library(GGL) as a part of the Standard Template Adaptive Parallel
Library (STAPL) framework. An important container in STAPL is the graph and its parallel equivalent, the pGraph. This
generic library provides functionalities to generate graphs in many ways via random, user specified traits or stencil based
patterns. A stencil is a user provided subgraph. Our framework will support joining of preexisting graphs to make a
composite of them, and use this functionality to generate output graphs. Besides this, the framework will also support ways
to calculate and store various properties of the graphs. A property of a graph is a value that describes an aspect of the graph,
i.e. number of edges, diameter, number of connected components. These properties are computed, and the framework
has functionality to have a valid current value for the properties as the graph is modified. The framework also supports
optimized techniques to keep the property values current and valid. Maintaining the properties for the graphs facilitates
graph generation based on a particular value set corresponding to a property (sub)set. Further, it provides a quick way
for the user to query the properties of the graph being modeled. Many real world applications like maps, and scheduling
model data in the form of graphs, would be able to use GGL . This will definitely make the task of generating test datasets
easier, improving the testing confidence level for these applications. In the STAPL framework, we plan on using GGL for
task scheduling problems and data dependency graphs generation. Future work includes extension of these techniques to
generate pGraphs.

∗This research supported in part by NSF Grants EIA-0103742, ACR-0081510, ACR-0113971, CCR-0113974, EIA-9810937, ACI-0326350, and by
the DOE.

Mittal (saransh@cse.iitb.ac.in) from the Department of Computer Science and Engineering at the Indian Institute of Technology Bombay.
Bacon (kbacon@gonzaga.edu) from the School of Engineering, Department of Computer Science, Gonzaga University.
Work performed at the Parasol Lab during research internship in Summer 2006 and Bacon supported in part by the CRA Distributed Mentor Project.



1

1 Introduction

The Graph Generator Library (GGL) is a toolset to make
it easier and faster to make and update graphs. Graphs
are used in many disciplines to represent connections or
relationships between pieces of information. Motion Plan-
ning uses graphs to plot paths for robots. Map makers use
graphs to plot and calculate routes. As useful as graphs
can be for a wide range of applications, they are tedious
and time-consuming to set up, especially if it is needed to
be done many times. Our toolset makes this task compara-
tively easy.

A graph can be set up in a number of ways. Graphs
also have many traits associated with them (i.e. number of
edges, completeness). We have implemented calculation
methods for some of these graph characteristics as part of
our GGL design (Section 2). We have also implemented
optimized calculation techniques for determining graph in-
formation from previous graph knowledge (Section 3). For
programming purposes, a graph library provides the tools
necessary to build a graph structure. While some previous
groups have developed graph libraries, they do not gener-
ally support graph generation. There are also some graph
generators already set up and used in the computing world,
but we feel that our combination of these useful tools (Sec-
tion 4) will prove beneficial.

2 The Graph
Varieties and Properties

In mathematics, a graph is a visual representation of a
data set. Graphs can show relationships and tendencies of
mathematical formulas that are usually only symbolic or
abstract. In computer science, graphs are data structures
based on the mathematical graph used to store information
according to relations. They are usually implemented as
an abstract data type (ADT) that consists of a list of nodes
and a list of edges. Nodes store the data, and they are con-
nected to each other by edges. The list of edges establishes
the connections, or relationships, between these nodes.

There are several ways to represent Graph Data Struc-
tures:

• As an Adjacency List, which stores a list of incident
edges in each node

• As an Adjacency Matrix, which represents the graph
as a boolean square matrix (M). The value at Mij spec-
ifies if an egde exists between nodes i and j.

• As a list of edges, with source and target information

Our graph is represented as a pair(V,E). The vertext set
V is a finite set of vertices and the edge set E describes the

relation on V. An edge is a set (a,b) where a,b ∈ V [3].

2.1 Graph Varieties

Graphs are set up from a combination of orthogonal vari-
eties. A graph can be directed or undirected, weighted or
unweighted, multiedge or non-multiedge. We define these
terms as follows:

• Directed (DG) - the pair (a,b) is ordered; the edge set
E refers to edges that are incident from, or leaving,
a vertex from V. Vertices are visually represented by
circles and edges by arrows. In a DG , an edge from a
vertex to itself (as in (a,a)) is possible [3].

• Directed Predecessor (DPG) - has the same proper-
ties as a DG , with the addition of a predecessor set
that contains edges that are incident to, or entering, a
vertex.

• Undirected (UG) - the edge set E contains unordered
pairs. In an UG , (a,b) is the same as (b,a) and an edge
cannot exist from a vertex to itself [3].

• Weighted (WG) - edges are each assigned a value
called the weight. The value can represent whatever
the user wants it to, i.e. a distance or time.

• Unweighted (UWG) - edges are not assigned a weight,
thus the information associated with the edge defaults
to -1.

• Multiedge (MG) - allows multiple edges to connect
any given pair of vertices.

• Non-Multiedge (NMG) - can only have up to one edge
per pair of vertices.

(a) DG, UWG, NMG (b) DG, UWG, MG (c) UG, WG, NMG

Figure 1: Example Graphs. (a) A Directed, Unweighted,
Non-Multiedge Graph. (b) A Directed, Unweighted,
Multiedge Graph. (c) An Undirected, Weighted, Non-
Multiedge.



2

2.2 Graph Properties

Depending on the type of graph you are working with,
there are many characteristics of that graph to consider.
We refer to characteristics as the properties of the graph.
As part of our generator framework, we have implemented
calculation methods for some of these properties.

We define the subset of property calculations we have
implemented as follows:

2.2.1 All Graphs

• Number of Vertices - The total number of nodes, or
objects, in the graph.

• Number of Edges - The total number of connections
between nodes, or vertices in the graph.

• Diameter - The longest of the shortest paths from any
given vertex to any other vertex in the graph is the
graph’s diameter. In an UWG , the diameter is found
as if the edge weights were all 1.

2.2.2 Undirected Graphs

• Number of Connected Components - The measure
of connectedness of the graph.

• Maximum Degree - The maximum number of edges
incident on a vertex of the graph.

• Minimum Degree - The minimum number of edges
incident on a vertex of the graph.

• Average Degree - The average number of edges inci-
dent on a vertex of the graph.

2.2.3 Directed Graphs

• Acyclic - A cycle is a sequence of vertices <

v1, v2, ...vk > in which v1 = vk [3]. Thus an acyclic
graph is one in which there is no cycle.

• Maximum Out Degree - The maximum number of
edges leaving a vertex.

• Minimum Out Degree - The minimum number of
edges leaving a vertex.

• Average Out Degree - The average number of edges
leaving a vertex.

2.2.4 Directed Predecessor Graphs

• Maximum In Degree - The maximum number of
edges entering a vertex.

• Minimum In Degree - The minimum number of
edges entering a vertex.

• Average In Degree - The average number of edges
entering a vertex.

Figure 2: Example Graph: A Map

Property value
number of vertices 5
number of edges 7
diameter 2221 mi
number of CC 1
maximum degree 5
minimum degree 1
average degree 2.8

Table 1: Property Values for Figure 2

3 Graph Composition
Methods and Properties

3.1 Composition Methods

We have identified four fundamental ways in which graphs
can be combined. These “compositional operators” can be
used as building blocks for combining graphs to make the
desired output graph. The compositional operators are:



3

(a) Graph A (b) Graph B

Figure 3: (a) and (b) are the original Graphs.

• Empty Join: Original graphs are merged into one
graph without being connected to each other. (Figure
4)

• Join At Vertex: Original graphs are connected at a
specified vertex. The corresponding vertices in both
graphs are merged together in the new graph. (Figure
5)

• Join At Edge: Original graphs are connected at a
specified edge. The corresponding edges in both
graphs are merged together in the new graph. (Fig-
ure 6)

• Join By Edge: Original graphs are connected by
adding an edge between the corresponding vertices of
the two graphs. (Figure 7)

Figure 4: Graphs A & B: Empty Join

Figure 5: Graphs A & B: Join At Vertex

Each join starts by combining the graphs with an empty
join operation, which relabels all the vertices so that each
vertex of the new graph has a unique ID. After relabeling,
the appropriate join method is called which connects the
different components together. For a “join at vertex”, two
vertices are specifies to be merged together, keeping the
ID of the first vertex. In a “join at edge”, two edges are

Figure 6: Graphs A & B: Join At Edge

Figure 7: Graphs A & B: Join By Edge

specified as two pairs of vertices. Like “join at vertex”,
the merged edge keeps the first IDs. A “join by edge” call
takes the vertex IDs to be joined and simply adds an edge
between them. In the DGcase, the edge is added from the
first vertex to the second.

3.2 Compositional Properties

The compositional properties provide a way to recalculate
the property values after changing the graph. When the
graph is modified, for example adding an edge or a ver-
tex, some property values of the graph might change. Pre-
viously, these changes were reflected by recalculating the
property. However, we found that we could optimize the
calculation if we knew the initial value of the property and
the graph modification being performed. Based on this, we
were able to reduce most complex algorithms to one line
formulas. This drastically reduced the computational cost
(See Table 2).

After a graph is joined, the composing method calls the
corresponding recalculate method for each property in the
graph. The recalculate method then determines if there
is sufficient previous data to optimize the calculation. If
so, the recalculate method uses the optimized method for
updating the property value (if there exists an optimized
version for the property). If the data is not sufficient, the
recalculate method computes from scratch.

3.3 Algorithms

For each of the joining methods above, we developed al-
gorithms to calculate the property value for the new graph.
Our goal was to call upon previously recorded knowledge
of the original graphs to reduce cost. Below are the al-
gorithms for the simplist property calculations, number of



4

Property number of vertices number of edges diameter
Calculate from Scratch Complexity O(n) O(n × m) O(n3

× m)
Why? every vertex must be visited every edge of each vertex must be visited depends on the type of graph

Optimized Calculate
Empty Join Complexity O(1) O(1) O(1)

How? G1.num vertices + G2.num vertices G1.num edges + G2.num edges max(G1.diameter, G2.diameter)
Join At Vertex Complexity O(1) O(1) O(1)

How? G1.num vertices + G2.num vertices - 1 G1.num edges + G2.num edges max(G1.diameter, G2.diameter,
diameter through joined vertex)

Join At Edge Complexity O(1) O(1) O(n3
× m)

How? G1.num vertices + G2.num vertices G1.num edges + G2.num edges - 1 must recalculate from scratch
Join By Edge Complexity O(1) O(1) O(1)

How? G1.num vertices + G2.num vertices G1.num edges + G2.num edges + 1 max(G1.diameter, G2.diameter,
diameter through new edge)

Table 2: Comparing Computational Cost

vertices and number of edges, as well as the most complex,
the property diameter. See Table 2 for a quick comparison
of the costs.

Number of Vertices, as defined in Section 2.2, main-
tains the total number of vertices in the graph. The algo-
rithm to find this value without any prior knowledge of the
graph is not very involved, just a run through the list of
vertices in the graph structure (Algorithm 3.1). This has a
cost of n, where n is the number of vertices. However by
using prior knowledge of graphs, finding the total number
of vertices in a composed graph can have a smaller cost,
namely a constant time algorithm. Our implementation is
outlined in Algorithm 3.2.

Algorithm 3.1 property num vertices
1: for each vertex in the graph structure do
2: increment count
3: end for
4: return count

Algorithm 3.2 compositional property num vertices
1: set join to type of join
2: num vertices = Graph1.num vertices + Graph2.num vertices
3: CASE join at vertex:
4: num vertices = Graph1.num vertices + Graph2.num vertices

- 1
5: CASE join at edge:
6: num vertices = Graph1.num vertices + Graph2.num vertices
7: CASE join by edge:
8: num vertices = Graph1.num vertices + Graph2.num vertices

Number of Edges, as defined in Section 2.2, maintains
the total number of edges in the graph. The algorithm to
find this value without any prior knowledge of the graph
finds the number of edges per every vertex in the graph
and adds them together (Algorithm 3.3). This has a cost
of n × m, where n is the number of vertices and m is the
number of edges. By using any prior knowledge of the
graphs, finding the total number of edges in a composed

graph can have a constant time cost like that for number of
vertices. Our implementation is outlined in Algorithm 3.4.

Algorithm 3.3 property num edges
1: for each vertex in the graph structure do
2: for every vertex in the edge list do
3: increment count
4: end for
5: end for
6: return count

Algorithm 3.4 compositional property num edges
1: CASE empty join:
2: num edges = Graph1.num edges + Graph2.num edges
3: CASE join at vertex:
4: num edges = Graph1.num edges + Graph2.num edges
5: CASE join at edge:
6: num edges = Graph1.num edges + Graph2.num edges - 1
7: CASE join by edge:
8: num edges = Graph1.num edges + Graph2.num edges + 1

Diameter, also defined in Section 2.2, contains the
longest of the shortest paths in the graph. Without any pre-
vious knowledge of the graph this value is found through
an applied algorithm, depending on the type of graph. In
the worst case senario, the complexity of our algorithm is
O(n3×m). These methods are outlined in Algorithm 3.5).
In most cases, using our optimized calculate calls for di-
ameter cuts down the cost in computing, seen in Algorithm
3.6.

4 Libraries

4.1 STAPL Graph

Our graph data structure is implemented in the
STAPLframework. STAPL, the Standard Template Adaptive
Parallel Library, is a parallel C++ library being developed
in the Parasol Laboratory at Texas A&M University. It is



5

Algorithm 3.5 property diameter
1: CASE “WG with positive weights“: use dijkstra’s al-

gorithm
2: for every starting point (vertex) do
3: for every ending point (vertex) do
4: path = dijkstra
5: for every location in the path do
6: current distance = current distance + pathLo-

cation.weight
7: end for
8: if current distance diameter value then
9: diameter value = current distance

10: end if
11: end for
12: end for
13: CASE ”WG with negative weights“: use bellman ford
14: for every starting point (vertex) do
15: for every ending point (vertex) do
16: path = bellmanFord
17: for every spot in the path do
18: current distance = current distance + pathLo-

cation.weight
19: end for
20: if current distance diameter value then
21: diameter value = current distance
22: end if
23: end for
24: end for
25: CASE ”UG“:
26: for every starting point (vertex) do
27: for every ending point (vertex) do
28: path = dijkstra
29: for every location in the path do
30: current distance = current distance + 1
31: end for
32: if current distance diameter value then
33: diameter value = current distance
34: end if
35: end for
36: end for
37: CASE ”more than one CC“:
38: for every CC do
39: if this diameter diameter value then
40: diameter value = this diameter
41: end if
42: end for

Algorithm 3.6 compositional property diameter
CASE empty join:
diameter = maximum of Graph1.diameter and
Graph2.diameter
CASE join at vertex:
diameter = maximum of Graph1.diameter, Graph2.diameter
and through joined vertex.diameter
CASE join at edge:
must recalculate diameter
CASE join by edge:
diameter = maximum of Graph1.diameter, Graph2.diameter
and through new edge.diameter

based on a library of ISO standard C++ components with
interfaces similar to the (sequential) Standard Template
Library (C++ STL). The standard STL, however, does not
provide a graph container. Hence, the STAPL graph is
a unique container which extends the facilities provided
by the C++ standard. The STAPL graph stores its data in
the form of a vector of vertices. Each vertex has a vector
which contains the list of vertices that it connects to.

One way to cut down the time required to make and
modify a graph is to set it up in parallel. One of STAPL’s
containers is the parallel graph, or pGraph. The pGraph
provides all of the functionality a traditional sequential
graph and is already being used on a number of projects
in the Parasol Lab. This parallel graph was designed for
applications which require highly scalable data structures,
which is our goal as well, and is implemented using a vec-
tor of nodes. At execution, the parallel graph is physically
distributed over multiple processors.

4.2 Other Libraries

There are currently a few external (not standard ISO C++)
graph libraries for C++, like the Boost Graph Library,
which is similar to the STAPL Graph, but none of them
include any graph generation facilities. Currently, the only
way to generate a graph is to manually add vertices to the
graph and then connect the vertices together with edges.
This can get very cumbersome and time-consuming, espe-
cially since most graph applications require graphs that can
easily contain thousands of vertices and edges. This being
said, a typical graph requires hours of manual labor. We
aim to cut down this time by automating the actual process
of generation.

4.3 Graph Generation

Our framework generates graphs using the properties of the
graph and the compositional operators. The graph can be
generated using the following steps.



6

First, the users specify the desired properties of the out-
put graph. For example, a graph with 98 vertices and a
diameter of 20. Next, they assign priorities and tolerance
limits to these properties. For example, give priority to
the diameter, and the number of vertices can have a value
within 10% accuracy. The graph generator can then try to
optimize the graph strictly for the diameter, and put less
emphasis on the number of vertices, as long as it is within
the tolerance limit.

Another option is for the users to specify a stencil,
which is a “bulding block” element used to construct the
graph (see Figure 8). The stencil defines the structure of
the fundamental element that can be used to build the out-
put graph, and the generator combines these stencils to-
gether to get the desired output.

Stencils can be combined in the following ways to gen-
erate the output:

• Regular Combination of Stencils (Mesh): The stencils
are combined in a repeated pattern to create a mesh,
or grid. The user can specify the number of stencils to
be used and/or the pattern, for example: create a 3X4
mesh (Figure 9).

• Irregular Combination: The stencils are combined de-
pending on the properties. The generator takes two
stencils and combines them using one of the four
compositional operators at random. It then computes
the desired property values, and compares them to the
final values. If the final values are not reached, it com-
bines the output graph from the previous step with an-
other stencil, and recalculates the properties. It then
compares the property values again, and keeps repeat-
ing this process until the desired values have been
reached. This method heavily relies on the compo-
sitional properties of the graph.

• User Determined Combination: In this method, the
user specifies the order in which to combine stencils,
and also decides which compositional operator to use
at each step.

4.3.1 User Specified

As seen in Section 2.2, we have implemented calculate
methods for some graph properties. We are aware that a
user may have their own properties to add to this list. Our
framework allows users to add their own properities in the
following way:

• The user must specify the resulting value type (i.e.
integer, boolean, etc.).

• The user must specify a method to calculate the prop-
erty without any previous knowledge about the value.

Figure 8: A stencil ’S’

Figure 9: A 3X4 mesh of stencil ’S’

Figure 10: A random network of stencil ’S’



7

The user could also specify optimized methods to calcu-
late the property for situations in which initial values are
known. (See Section 3 for more details on optimized cal-
culations.) This helps in speeding up property calculations
when changes to the graph are made, but is not required.

5 Conclusions and Future Work

Our framework provides multiple ways to automate the
task of generating graphs. With graphs being used in vari-
ous applications, the framework will find its use in a vari-
ety of places. This framework should increase productivity,
due to the ease of generating graphs and the more efficent
way to keep track of properties.

In the future, we plan to parallelize the framework to be
able to generate graphs on parallel systems. We would also
need to parallelize the property calculation and combina-
tion methods to maintain the efficiency of the framework.
Finally, we plan to use the library for applications such as
Scheduling, Motion Planning, Protein/RNA folding, and
Campus Navigator.

6 Acknowledgments

We would like to thank Roger Pearce for setting up our
code repository and listserv, and Nathan Thomas for giving
us insight on elegant C++ programming.

7 References

[1] N. Thomas, G. Tanase, O. Tkachyshyn, J. Perdue, N.
Amato, L. Rauchwerger. A Framework for Adaptive Algo-
rithm Selection in STAPL. In Proc. ACM SIGPLAN Symp.
Prin. Prac. Par. Prog. (PPOPP), Chicago, Ill, Jun 2005.

[2] S. Thomas, G. Tanase, L. Dale, J. Moreira, L.
Rauchwerger, N. Amato. Parallel Protein Folding with
STAPL. In Concurrency and Computation: Practice and
Experience, Dec 2005.

[3] T. Cormen, C. Leiserson, R. Rivest, C. Stein. Intro-
duction to Algorithms. Second Edition, Nov 2002.

[4] R. Johnsonbaugh, M. Kalin. Graph Generation Soft-
ware Package. Chicago, Ill. http://condor.depaul.edu/˜
rjohnson/source/graph ge.c

[5] L. Lee, A. Lumsdaine, J. Siek. The Boost Graph
Library: User Guide and Reference Manual. First Edition,
Dec 2001

[6] Standard Template Library Programmer’s Guide.
http://www.sgi.com/tech/stl/

[7] G. Tanase. Adaptive Parallel Containers in STAPL,
Phd Proposal Dept of CS. Texas A&M University.

[8] P. An, A. Jula, S. Rus, S. Saunders, T. Smith, G.
Tanase, N. Thomas, N. Amato, L. Rauchwerger. STAPL:
An Adaptive, Generic Parallel C++ Library. In Wkshp. on
Lang. and Comp. for Par. Comp. (LCPC), pp. 193-208,
Cumberland Falls, Kentucky, Aug 2001.


