
Optimization of Module Placement during FPGA Partial Reconfiguration

Jin Hu
Northwestern University

Elaheh Bozorgzadeh
University of California Irvine

Love Singhal
University of California Irvine

Jin@northwestern.edu, {eli, lsinghal}@ics.uci.edu

Abstract. With the novel feature of partial reconfiguration, FPGAs (field programmable gate
arrays) have the potential to become even more powerful and versatile. The ability to
reconfigure during run-time offers improvement in task flow and reduction for total time
required. This development of dynamic programming then leads to the problem of module
placement – given a series of tasks, what is the best implementation of each task such that the
amount of time needed for partial reconfiguration is minimized? To solve this problem, both the
placement and interface of the logic components must be taken into account. This paper not
only discusses the behavior of standalone modules but also looks at how they behave when part
of a bigger, more complex system.

Keywords. Partial reconfiguration, module placement, FPGA, design implementation

1. Introduction
A built-in feature of the Virtex-4TM FPGA (field programmable gate array) board, partial
reconfiguration gives users the luxury to modify the contents of the FPGA board during runtime.
Without the usage of partial reconfiguration, only static programming was available – once the
board is written to, it cannot be changed. With partial reconfiguration, however, the concept of
dynamic programming is introduced – part of the board can be modified whilst the rest remain
untouched. Not only does partial reconfiguration allow the support the execution of different
tasks on a single FPGA board, it also can potentially decrease the total amount of time needed
for task execution.

Partial reconfiguration is a process in which bits are streamed serially and reprograms the FPGA
board column by column or frame by frame. To optimize the amount of time needed to partially
reconfigure, the number of bits required must be minimized. This then leads to the observation
of shared logic components. If two tasks, Task 1 and Task 2, both share a common module, for
example a 32-bit multiplier, there is no reason to overwrite the Task1’s 32-bit multiplier – the
common module could be used for Task 1 and then reused for Task 2. By reusing a module, the
number of bits needed to reconfigure from Task 1 to Task 2 potentially decreases.

2. Motivation
The process of partial reconfiguration is advantageous both in terms of time and space. Between
any two given tasks, the more shared logic components there are, the higher the potential to
save on the number of bits. Even in the worst case, if there are no common components between
the two tasks, partial reconfiguration is still cheaper, both in terms of area and time, than
reprogramming the entire board.

Not only can partial reconfiguration drastically save on the amount of time needed for task
transition, it also can reduce on the amount of real estate needed. The area used to support
modules only found in Task 1 can easily be used to support modules only found in Task 2. With a
combination of both static and dynamic programming, not only can the flow of task execution be
improved but also the total amount of time needed can be reduced.

 1

mailto:Jin@northwestern.edu

3. Related Work
In the field of partial reconfiguration, there has been a substantial amount of work done already.
In particular, there are two subtopics of interest – bit difference and algorithmic mapping. It has
been shown that given a typical reconfiguration bit stream, less than 3% of the total bits differ
[2]. However, because the bits are scattered about in many different frames, the reconfiguration
cost grow exponentially larger. Following up on this problem, a technique has been developed to
alter the granularity of reconfiguration, namely going by individual bits instead of the number of
frames. The results show a competitive reduction in costs, around the order of 80%.

The second important piece of research done shows that purposeful (non-arbitrary) mapping
significantly reduces reconfiguration costs [1]. The work done generalizes this process using
high-level algorithmic blocks which are analogous to the logic components discussed in this
paper. The algorithm described specifies a partitioning method to match up components based
on both resource usage and execution time. The work done in this paper uses a simplified
version of the previously mentioned method. Namely, the mapping is done on a smaller scale
and is manually chosen to match up modules that perform the exact same task.

The groundwork of this paper is built upon the previous findings. The work done extends upon
that foundation and looks at (ultimately) reconfiguration savings between two designs. The
results discussed specifically focuses on the FPGA Virtex-4TM board and its logic components.

4. Problem Description
The overall goal to reduce the total amount of time hinges on the amount of transition time
needed between tasks. Specifically, the number of bits needed to partially reconfigure must be
minimized. This then leads to the question of module placement – given a series of tasks, what
is the optimal placement of logic components such that bit reconfiguration is minimized?
Within this problem, there are two main issues to consider: the physical placement and the
interface of the modules.

To better understand how each consideration affects the number of bits needed, different
constraints must be placed on the logic components. There are three constraints considered:
real estate, number of frames and bits, and timing (clock frequency). Each aspect is important to
consider, as each affects the module placement and performance differently. The constraints are
designed in concurrence with the others, as they are all interrelated.

4.1. Preliminaries
A module is a catch-all term for any logic component that uses both inputs and outputs. This
includes, but is not limited to, adders, multipliers, and dividers. This paper mainly focuses on
multipliers, as out of the three, they are the dominant components. All synthesis and
implementation of the modules is done using the Xilinx® ISE v7.1 software bundle. The
modules themselves are generated using CORE Generator and are placed on the Virtex-4TM
FPGA board.

4.2. Considerations
To further clarify the constraints imposed on the designs, the following explains in detail what
each constraint entails.

4.2.1. Real Estate
The amount of space needed on the FPGA is perhaps the easiest to visualize. The foremost
concern is that the module must fit onto the chosen board. It is highly unlikely that in any given
design only one module is used, so the amount of room per module should be minimized. The

 2

space is measured in terms of slices or configurable logic blocks (CLBs); two slices equate to one
CLB. Note that the area refers to the entire implemented version – namely, it not only includes
the logic but also the routing required. The areas reported in this paper only refer to the
specified constrained area – the actual area of the module will be slightly greater due to routing.

When implementing modules, not only does physical space of the module matter but also the
shape of the module. The Xilinx® software package allow the modules great flexibility, as they
can be any rectangular shape. However, with the overall goal in mind, to reduce the number of
bits needed to reconfigure, the shape of the module will follow in accordance to frame height, a
subject discussed in greater detail in the section below.

4.2.2. Timing
The strictest constraint of all, the clock frequency in which a module operates under does not
have as much leeway as the previously mentioned constraints. If timing cannot be met, then the
entire design must be modified such that the time the module runs under is acceptable. Thus,
whenever using Xilinx®, a tight timing constraint needs to be specified – the tool only checks if
the timing constraint is met and will not optimize further if the current design passes. The
caveat to this is that if the timing constraint is too tight, then occasionally the tool is not able to
meet it. When the tool fails, it fails miserably and gives a much worse ‘actual’ timing than if a
slightly looser timing constraint was given.
The timing constraint also affects the design, namely the routing, of the implemented module in
two ways: congestion and wire type. The tighter the timing constraint, the more chaotic the
routing becomes. To alleviate this problem, it is possible to loosen the timing constraints slightly
to achieve a better implementation. A tighter timing constraint would also employ the use of
short (faster) wires.

If too loose of a constraint is imposed, it is possible for Xilinx® to use long (slower) wires and
save the short wires for other more modules that have stricter requirements. For all modules
implemented, the timing, given as the clock period, is restricted on the nanosecond [ns] scale.

4.2.3. Frames and Bits
During partial reconfiguration, the number of frames to reprogram directly correlates to the
number of bits to reprogram.

The conversion factor is as follows:
40 words 4 bytes 8 bits1 frame 1280 bits
1 frame 1 word 1 byte

× × × = .

As a rule of thumb, every CLB is approximately equal to 22-23 frames. If even one bit in the
entire frame needs to be reprogrammed, then the entire frame needs to be reprogrammed. Thus,
it is important that the each frame is used to its fullest extent. For the Virtex-4TM FPGA board,
each frame spans a height of 16 CLBs or 32 slices (1 CLB = 2 slices). Thus, it is advantageous that
all modules are designed in accordance with frame height (every 16 CLBs). All modules then are
designed in the following manner: the height of the module is first determined with respect to
the frame height and the width is minimized afterwards.

4.3. Formulation
The approach for minimizing the number of bits during partial reconfiguration is broken down
into four main sections: single modules, merged modules, interface, and design integration. The
first three sections deal with standalone implementations. Once individual components are
understood, they can be integrated within larger and more complex designs.

 3

4.3.1. Analysis of Single Modules
The algorithm begins by looking at the single logic components. These are, but not limited to,
adders, multipliers, and dividers. The data of primary interest involves the optimal sizing of the
module and the number of frames (and consequently the number bits) needed during partial
reconfiguration. The data is measured across different standard (8, 16, and 32) input bit-widths.
This paper’s discussion primarily focuses on multipliers as they are the dominant component
out of the three mentioned modules.

4.3.2. Analysis of Merged Modules
This section focuses on what happens when multiple single modules are merged together as a
single module. The purpose is to see if there is any advantage into grouping separate modules as
one instead of mapping each single module separately. The discussion focuses on the multiplier-
adder, or MAC, a common component used in many designs.

4.3.3. Analysis of Module Interface
Finishing up standalone modules, this section discusses how interface affects module behavior.
In this section the modules’ interface (inputs and outputs) are bound in specified areas, whilst in
the previous two sections the inputs and outputs were left unconstrained. The empirical data
collected for this section uses multipliers using similar reasoning as above.

4.3.4. Dataflow Graph Design Integration
After individual analysis of modules and module interface, the logic components are then
implemented as part of a bigger design given by dataflow graphs (dfgs). As the name implies,
data flow graphs only provide the flow of the data and not the implementation. Thus, using two
different dfgs, various arrangements are tested to see the effects of module placement. Different
mappings are also done to see how mapping affects the performance of the designs.

5. Individual Analysis
Based on the approach specified above, the methodology of each section is explained in greater
detail. The conclusions are then discussed based on the various experiments’ results.

As further clarification, the column heading are defined as follows:
• Area? – A yes/no field denoting whether area constraints were placed on the module.
• Time (Actual) – The given timing constraint and the actual running time (in parenthesis).
• Width – The number of slices needed for the module length-wise (x-direction).
• Height – The number of slices needed for the module height-wise (y-direction).
• Total Area – The total real estate needed on the FPGA board for logic placement ONLY.

Note that this does not include extra routing.
• Frames Needed – The number of frames needed to reconfigure as given by Bitgen, a

program part of the Xilinx® software package.
• .bit Size – The size of the .bit file generated by Bitgen which specifies the exact number of

bits needed to reconfigure. Note that this field is given in terms of bytes and not bits.

The other clarification point relates to the generated graphs. As shown, the independent axis
displays frame height. However, note that there is a data point at a supposed frame height = 0.
This, of course, is not feasible. This data point signifies the module when no area constraints are
introduced – the purpose is to see what Xilinx® would do if given no boundaries.

 4

5.1. Single Modules
The discussion focuses primarily on 32-bit multipliers, as they not only are commonly used
components but also are large enough to show clear trends and results. The data is summarized
in the table below.

Table 1: Experimental Data for 32-Bit Multipliers

32-Bit Multiplier

Area? Time (Actual) [ns]
Width
[slices]

Height
[slices]

Total Area
[slices2]

Frames Needed
[frames]

.bit Size
[bytes]

no 12.000 (11.946) 28 48 1,008 633 114,645

yes 12.000 (11.868) 32 26 832 354 63,653

yes 12.000 (11.997) 12 60 720 295 52,289

yes 12.000 (11.951) 8 92 736 316 56,537

yes 12.000 (11.975) 6 120 720 400 75,453

yes 12.000 (11.979) 4 192 768 548 108,201

5.1.1. Real Estate
According to the synthesis report generated by Xilinx®, the 32-bit multiplier needs 591 slices
purely for logic. As shown from the table above, the area (along with the dimensions) used
clearly exceed this number. The extra space is used for routing during implementation – not
only does the logic need to be placed but the routing also must be possible given the logic layout.
The area and dimensions displayed in the table (as noted above) is the bounding box specified
when implementing the module. Note that for the given data the logic is completely placed
within the bounds but some wires may still be outside. This becomes more evident as the
module width becomes smaller.

The graph below shows the relationship between frame height and the total area needed.
Observe that the when the tool is not given an area constraint, the module uses up substantially
more space than any other constrained arrangement. Thus, it is an advantage to specify area
constraints as to limit the amount of board usage.

0 1 2 3 4 5 6
700

750

800

850

900

950

1000

1050

Frame Height

S

lic
es

Area vs. Frame Height

Constrained Area

Figure 1: Constrained Area vs. Frame Height of 32-Bit Multipliers

 5

As the frame height increases, note that beyond the first frame height, the area needed for the
multiplier stays relatively constant with the exception at the frame height of one. The reason for
the slightly larger area is that for a frame height of one (limit 16 CLBs) the multiplier’s width
must be at least 16 CLBs. This then causes the minimal dimensions to be 16 by 13. Going beyond
the first frame height, the required area stays around 750 slices. This then implies that the
regardless of the shape or frame height, no extra area is needed. Thus, the module shape is
flexible and is not limited or dependent upon the frame height. However, the module must have
some type of constraint imposed, as the unconstrained result is worst out of the entire data set.

5.1.3. Timing
The amount of time needed for the multiplier to run falls slightly under 12 nanoseconds
consistently for each trial. The imposed constraint of 12 ns is a relatively tight bound, as the
multiplier is unable to perform under 11 ns. Table 1 shows the amount of time needed for each
trial. The data shows consistently that for any given 32-bit multiplier, the time required to run is
slightly below 12 ns. If necessary, the timing can be reduced slightly, but not much more than
the current results.

5.1.4. Frames and Bytes
Below shows the frames and bytes needed to implement a standard 32-bit multiplier. Figure 2
displays two curves – an estimated value of the number of frames based on the constrained area
and the actual number of frames needed for implementation. Notice that toward the smaller
frame heights (unconstrained, 1, and 2), the estimate and actual numbers are similar. The
estimated curve (blue) shows that the number of frames stays relatively constant, regardless of
frame height. However, the actual curve (red) shows that there is a minimum at the frame
height of 2 at which the number of frames is minimized. This deviation implies that as the shape
of the implemented module becomes taller, the wiring plays a more and more noticeable role in
determining the number of frames needed. As the module width becomes narrower, it becomes
increasingly difficult to fit all the logic and the wiring inside a given width. Thus, it is important
to not only take the logic needed into consideration but also the wiring that goes outside the
bounded area.

0 1 2 3 4 5 6
250

300

350

400

450

500

550

600

650

700

750

Frame Height

Fr

am
es

Frames vs. Frame Height

Actual # Frames
Estimated # Frames

Figure 2: Number of Frames vs. Frame Height of 32-Bit Multipliers

 6

Figure 3 also shows two curves – an estimated number of bytes and the actual number of bytes
needed to reconfigure a 32-bit multiplier. The estimated number of bytes is based on the actual
number of frames – each data point is the number of frames converted to bytes. Note that there
is a difference between the two curves. This shows that in order to reconfigure the multiplier, the
number of frames is not the sole, albeit major, contributor to the number of bytes needed. The
extra number of bytes needed is the overhead of reconfiguration. This includes, but is not
limited to, the addresses of each frame needing to be modified.

0 1 2 3 4 5 6
4

5

6

7

8

9

10

11

12 x 104

Frame Height

B

yt
es

Bytes vs. Frame Height

Actual # Bytes
Estimated # Bytes

Figure 3: Number of Bytes vs. Frame Height of 32-Bit Multipliers

Another point of interest is that there is a relatively uniform distance between the two curves
shown in Figure 3. This similar difference implies that the regardless frame height, the overhead
needed stays relatively constant. This shows that the overhead needed is not based upon the
shape of the module and is a constant amount regardless of implementation choices. From the
graph, it is clear that the number of bytes is minimized at the frame height of 2 with 3 coming in
at a very close second.

5.2. Merged Modules
The following table summaries the results for 32-bit multiplier-adders or multiplier-
accumulators, more commonly known as MACs. Note that the area needed is comparable to the
standalone multiplier but uses up more frames and bits. The MAC, if combined, is treated as one
module by the tool and is able to fit in less space than the two separate components.

Table 2: Experimental Data for 32-Bit Multiplier-Adders

32-Bit Multiplier-Adder

Area? Time (Actual) [ns]
Width
[slices]

Height
[slices]

Total Area
[slices2]

Frames Needed
[frames]

.bit Size
[bytes]

no 12.000 (11.996) 36 22 792 430 74,824

yes 12.000 (11.984) 32 26 832 386 67,392

yes 12.000 (11.907) 12 62 744 337 60,068

yes 12.000 (11.984) 8 92 736 326 56,732

yes 12.000 (11.991) 6 124 744 368 67,224

 7

5.2.1. Real Estate
The 32-bit multiplier-adder needs a total of 605 slices for logic – 591 from the multiplier and 16
from the adder. However, the data shows numbers greater than the base value. This is again due
to the routing and extra wiring needed for implementation. The graph below shows the general
trend of how much real estate is needed as frame height increases.

0 0.5 1 1.5 2 2.5 3 3.5 4
720

740

760

780

800

820

840

860

Frame Height

S

lic
es

Area vs. Frame Height

Constrained Area

Figure 4: Constrained Area vs. Frame Height of 32-Bit Multiplier-Adders

One interesting point is that when the module is implemented unconstrained, the result is
actually better than if the module has a frame height of 1. This could be due to the fact that
because the component is very common, the tool knows how to optimize this specific case.
Another reason could be that the multiplier-adder is not ideally implemented when forced to
have to a frame height of 1. Like the standalone 32-bit multiplier, in order to have a frame height
of 1, the width must be at least 16 CLBs (or 32 slices). Given this as a lower bound, the module’s
height does not stretch to the full 16 CLBs and only needs 13 CLBs. This reduction in height then
leads to an unfortunate increase in the number of frames, a topic discussed in more detail in an
upcoming section.

Another similarity between the multiplier and the MAC is that beyond the first frame height, the
amount of area needed stays relatively constant and settles around 750 slices. This area is very
comparable to the amount of space needed for a lone 32-bit multiplier. This then implies that
the adder is integrated together with the multiplier to save space on the FPGA board and is
cheaper than implementing a multiplier and an adder separately. As the trends for the MAC are
similar to that of the standalone multiplier, it is clear that between the multiplier and the adder,
the multiplier is the dominant component.

5.2.2. Timing
The table on the previous page lists the time required for the MACs for each frame height. Like
the multiplier, the timing constraint of 12 ns is a relatively tight bound. The amount of time
needed for the adder is negligible, even if the adder’s output is registered. As before, the timing
is predominantly influenced by the multiplier, so this component is very hard-pressed to run
any faster than using a 12 ns clock cycle.

 8

5.2.3. Frames and Bits
The graphs below depict the trends for the number of frames and the number of bits needed for
the MAC. In Figure 5, the blue curve shows an estimated number of frames (manually estimated
from FPGA Editor) and the curve in red shows the actual number of frames (given by Bitgen). As
given by the graph, the both curves lead to different conclusions. The estimated curve levels off
at a constant value of around 275 frames but the actual curve finds a minimum at a frame height
of 3 (a frame height of 2 comes at a close second). Due to the wiring that falls outside the
bounding box, the estimated number of frames is substantially lower than that of the actual.

0 1 2 3 4
250

300

350

400

450

500

550

600

Frame Height

Fr

am
es

Frames vs. Frame Height

Actual # Frames
Estimated # Frames

Figure 5: Number of Frames vs. Frame Height for 32-Bit Multiplier-Adders

In Figure 6 depicts the trends of the actual number of bytes needed (red) and the estimated
number of bytes needed based on the number of frames (blue). Note that the gap between the
two curves is smaller than the gap for the standalone multiplier but the overall number of bytes
is greater. As there are more frames to reconfigure, the number of bytes needed also increases.
Because this module is relatively dense (logic is packed tightly), the frames are close to one
another, cutting down on the number of addresses needing to be stored significantly. The
similar shape of the two curves also implies that the amount of overhead is readily predicable.

0 1 2 3 4
5

5.5

6

6.5

7

7.5 x 104

Frame Height

B

yt
es

Bytes vs. Frame Height

Actual # Bytes
Estimated # Bytes

Figure 6: Number of Bytes vs. Frame Height for 32-Bit Multiplier-Adders

 9

5.3. Overhead for Modules
Figure 7 shows the trend between the number of bytes and the number frames needed. The data
not only includes a compilation of experiments mentioned above, but also some external
experiments that are not discussed in this paper.

0 100 200 300 400 500
0

1

2

3

4

5

6

7

8

9 x 104

Frames

B

yt
es

Bytes vs. # Frames for Modules

Figure 7: Number of Frames vs. Number of Bytes Needed for Modules

From the graph, there is a strong linear correlation between the number of frames and the
number of bytes needed for partial reconfiguration. This data also takes into account the
overhead required to implement. The multiplier and the multiplier-adder are both contiguous
logic components, so the relationship is predictable – there are no substantial gaps in the logic
modules to lead to strong variation.

5.4. Module Interface
The final standalone set of experiments done also involves multipliers on this time incorporates
interface. The previous data only controlled the module shape and not where the inputs and
outputs are located. In order to effectively control the direction of data, the I/O needs to be
specified. This is extremely important during partial reconfiguration, as to be able to reuse a
component, not does the function need to match but the interface as well.

To constrain the inputs and outputs, the concept of wrappers is introduced. Wrappers merely
restricts where all the input and output pins need to lie relative to the module itself. The
advantage of these wrappers is that they are moveable – they can be placed anywhere around
the module, even far away (though this is counterproductive to the overall goal). However, once
a location is chosen, the wrappers remained fixed and the entire set (module plus wrappers) is
reconfigured. For every module (shown in blue), there are two input wrappers (shown in red)
and one output wrapper (shown in violet).

Figure 8: Example Picture of Module plus Wrappers

Module

Wrapper W
r
a
p
p
e
r

Wrapper

 10

Table 3 shows the results of a standard 32-bit multiplier with wrappers. Multipliers are used as
previously they have demonstrated to be a dominant component. The dimensions of the
wrappers are not included in the table as the extra resources used vary, depending upon the
placement. Specifically regarding real estate, the wrappers, although taking up room during
constraint placement, use up only a small amount of space when implemented. Note that the
entire package (module plus wrappers) are all contained with the specified frame height.

Table 3: Experimental Data for 32-Bit Multipliers plus Wrappers

32-Bit Multiplier with Wrappers

Area? Time (Actual) [ns]
Width
[slices]

Height
[slices]

Total Area
[slices2]

Frames Needed
[frames]

.bit Size
[bytes]

no 12.000 (11.987) 36+ 22+ 1218 448 77,375

yes 12.000 (11.972) 32+ 26+ 1050 421 75,184

yes 12.000 (11.952) 12+ 62+ 940 385 69,687

yes 12.000 (11.977) 8+ 92+ 946 429 80,415

5.4.1. Real Estate
The constrained area trend follows that of a multiplier with no wrappers. The unconstrained
data point is extremely high and as frame height increases, the number of slices needed levels off
to a relatively constant number. The wrappers also take up extra room on the board, but when
implemented, they take up relatively little room and there is no significant increase in the
number of frames.

0 1 2 3
900

950

1000

1050

1100

1150

1200

1250

Frame Height

S

lic
es

Area vs. Frame Height

Constrained Area

Figure 9: Constrained Area vs. Frame Height of 32-Bit Multipliers plus Wrappers

Note that the total area used has more variation than a standalone multiplier implementation.
This is due to the placement of the wrappers – different arrangements cause the logic, and
subsequently the routing, of the multiplier to vary. Similar to its non-wrapper counterpart, the
multiplier plus wrappers set needs to have a specified area constraint, as the constrained is
worse than all other data points.

 11

Figure 10 shows the different optimal arrangements of the different frame heights. Each sub-
figure includes the multiplier (purple), two input wrappers (turquoise and green), and one
output wrapper (yellow). Notice that with a frame height of 1, the wrappers are able to fit along
the top and bottom of the module. However, as the width becomes narrower, the result is best
when the wrappers occupies one long column along one side.

 Frame Height: 1 Frame Height: 2 Frame Height: 3

Figure 10: Various Optimal Arrangements of Wrappers for 32-Bit Multipliers with Wrappers

5.4.2. Timing
The wrappers themselves are constructed using combination logic, so they do not contribute any
extra to timing performance. Thus, they follow the same behavior as a regular multiplier. The
timing constraint of 12 ns is a tight bound and each trial, with some variation, meets this timing
requirement.

5.4.3. Frames and Bits
The graph below shows the estimated and actual number of frames needed to reconfigure a
multiplier plus wrappers. Note that for any frame height, including the unconstrained version,
the estimated number of frames stays the same. However, the actual number of frames clearly
finds a minimum at a frame height of two. This is consistent with the results found for the
standalone 32-bit multiplier.

0 1 2 3
380

390

400

410

420

430

440

450

Frame Height

Fr

am
es

Frames vs. Frame Height

Actual # Frames
Estimated # Frames

Figure 11: Number of Frames vs. Frame Height of 32-Bit Multipliers plus Wrappers

 12

The graph below shows the estimated number of bytes needed (based on the number of frames)
and the actual number of bytes needed. The two curves are remarkably similar in shape. This
then implies that the overhead needed is predictable.

0 1 2 3
6

6.5

7

7.5

8

8.5 x 104

Frame Height

B

yt
es

Bytes vs. Frame Height

Actual # Bytes
Estimated # Bytes

Figure 12: Number of Bytes vs. Frame Height for 32-Bit Multipliers plus Wrappers
This result is consistent with the standalone multiplier, having a minimum at a frame height of 2
but significantly different than the multiplier-adder, which has a minimum at a frame height of
3. However, with the MAC, a frame height of 2 yields a very close result to that of the minimum.
Thus, a consensus can be made that across all fields, the optimal design is when the module has
a frame height of 2.

5.5. Overhead for Modules with Interface
The graph below shows the relationship between the number of frames and the corresponding
number of bytes needed to reconfigure a 32-bit multiplier plus wrappers. The different data
points all includes the above mentioned results as well as outside experiments that are omitted
in this paper. Note that there is more variation in this set, so the relationship is not as strong as
that of the modules without wrappers. The implementation of the wrappers leaves gaps along
the sides, causing the module to be slightly uneven. Despite the slight fluctuations, however, the
relationship between the number of frames and of bytes is clearly linear.

300 350 400 450 500
5

5.5

6

6.5

7

7.5

8

8.5

9

9.5 x 104

Frames

B

yt
es

Bytes vs. # Frames for Modules

Figure 13: Number of Frames vs. Number of Bytes Needed for Modules with Wrappers

 13

6. Dataflow Graphs
Now that the basic components have been covered, they can be incorporated into more
advanced topics, namely dataflow graphs (dfgs). Dataflow graphs very elegantly show the
execution path of inputs to outputs. Shown below are two examples of dfgs, both of which are
used in the following experiments, where Design 1 is used as a base design and Design 2 is the
new incoming task. The overall goal is to minimize reconfiguration time, which in turn is to
minimize the number of bytes that differ.

Design 1 Design 2
Figure 14: Two Designs of Dataflow Graphs

6.1. Considerations
As dfgs only show the flow of data (like the name implies), the implementation is completely up
to the designer. This freedom, albeit flexible, comes with a slew of design considerations. The
remainder of this paper focuses on the mapping aspect. Mapping is a process in which, given a
module that is common in two designs, that module is kept and reused. Note that this is
different than overwriting one module with another module with the same functionality. The
following highlights the different subtopics of mapping covered.

6.1.1. Unconstrained Mapping
What will Xilinx® do if left on its own? The tool itself is an optimization tool and if given no area
constraints, it can find the best implementation for a particular design. One main reason is to
find other aspects that need controlling for further optimization. The mapping is done
arbitrarily but only the same components are mapped from one design to the next. This will also
be used as a baseline to compare to the other experiments.

6.1.2. Constrained Mapping
Constrained mapping takes into account the concept of floor planning – a process in which each
module is given a location. Instead of giving no area constraints and letting the tool go, each
component not only has a shape constraint but also has a placement constraint. The tool is then
forced to re-optimize based on these new user-specified constraints. This set of experiments will
show how floor planning affects bit reconfiguration minimization. The mapping and placement
of the modules, like the first set of experiments, are also arbitrary.

 14

If the interface of a module is altered, then the logic and routing of the module will also be
altered. Even when a component is mapped, only the logic remains the same. Thus, to eliminate
the difference in routing, wrappers are added to direct where the inputs and outputs will go. Due
to the different components of the design, only the multipliers will have wrappers. The
mappings and placements will be the same as the ones of the constrained mapping.

6.1.3. Reverse Mapping
In the final set of experiments, the roles of Design 1 and Design 2 are flipped – Design 2 will act
as the base design and Design 1 is the new incoming task. The implementation will use
constrained mapping and take interface into account. The purpose of this set of experiments is
too see if there is an optimal order of designs if given a series of tasks to complete.

6.2. Implementation
The implementation of dataflow graphs all follow a general guideline, as shown by Figure 15. The
first step is to pick out a specific dfg to implement. Once the graph has been chosen, it is then
translated into code, either Verilog or Very high speed integrated circuit Hardware Description
Language (VHDL). Sometimes, a user constraint file (.ucf) is added to supplement the code. All
the code is then synthesized and implemented using Xilinx®.

The implementation involves three general steps: translation, mapping, and place and route
(PAR). Specific functions of each step is explained in great detail in the Development Guide
published by Xilinx® but is summarized in the following. The translation, or ngdbuild, step takes
the synthesized code and converts it into a logical description of the design in terms of both the
hierarchical components used and the lower-level Xilinx primitives. The output, an .ngd file, is
then fed into the mapping stage, which maps the design to the target FPGA. The newly
generated .ncd file is then fed into the PAR which, when completed, outputs another .ncd file,
only this one is fully routed [3]. Finally, the .ncd file is sent through Bitgen which generates a
.bit file and determines the number of bits and frames. Note that there are additional output
files generated during the implementation stage but is omitted in this discussion.

During mapping and PAR, guide files can also be specified as to help specify the placement of
logic components. This step is strictly optional and is only used when one module in one design
is reused. It is possible to write a batch file to execute this entire process of synthesis and
implementation by running Xilinx® Project Navigator in Command Line Mode. The specific
commands for each step are included in the Development Guide.

.v or .vhdl

.ucf

ngdbuild map PAR
.ngd .ncd .ncd Bitgen dfg

.bit

bits and
frames

optional
.ncd

optional
.ncd

Figure 15: Flow Chart of Design Synthesis and Implementation Process

 15

6.3. Unconstrained Mapping
Xilinx®, given only a timing constraint (no area constraints), removes the hierarchy of the
individual components and find the best arrangement of the logic such that performance (time
and/or space) is optimized. With the lack of design hierarchy, the logic slices are strewn about
the entire board in such a way that each piece is optimized for real estate or overlap usage. This
process is known as flattening. The other extreme of module placement is known as floor
planning, a topic discussed in greater detail in a following section.

In this set of experiments, Design 1 is implemented with no area constraints (and imposed with
an average timing constraint) after which Design 2 is mapped back to Design 1. Table 4 below
shows the different mapping combinations. Design 2, having nine multipliers, must leave one
multiplier unmapped, as Design 1 only has eight multipliers. This is considered full mapping.
The number of mapped multipliers is then decreased incrementally; this generates partial
mapping data. This continues until no multipliers are mapped, in which case is referred to as no
mapping. In this particular case, when a multiplier is no longer mapped back to Design 1, it is
left unconstrained.

As these particular dataflow graphs involve only multipliers and adders, the multipliers are the
components that are removed one by one. They are the dominant components and the results
are more noticeable than if removing adders. In the following table, the multipliers listed in
black are the original multipliers from Design 1 while the ones in red are the ones found only in
Design 2. Notice that in the no mapping column (o Mapped Multipliers) all multipliers are
colored red.

8 Mapped
Multipliers

7 Mapped
Multipliers

6 Mapped
Multipliers

5 Mapped
Multipliers

4 Mapped
Multipliers

3 Mapped
Multipliers

2 Mapped
Multipliers

1 Mapped
Multiplier

0 Mapped
Multipliers

m_mult_17 m_mul4100 m_mul4100 m_mul4100 m_mul4100 m_mul4100 m_mul4100 m_mul4100 m_mul4100

m_mul4102 m_mul4102 m_mul4102 m_mul4102 m_mul4102 m_mul4102 m_mul4102 m_mul4102 m_mul4102

m_mult_21 m_mult_21 m_mult_21 m_mult_21 m_mult_21 m_mul4104 m_mul4104 m_mul4104 m_mul4104

m_mult_24 m_mult_24 m_mult_24 m_mult_24 m_mult_24 m_mult_24 m_mult_24 m_mult_24 m_mul4107

m_add_11 m_add_11 m_add_11 m_add_11 m_add_11 m_add_11 m_add_11 m_add_11 m_add_11

m_mult_15 m_mult_15 m_mult_15 m_mult_15 m_mul4140 m_mul4140 m_mul4140 m_mul4140 m_mul4140

m_add_20 m_add_20 m_add_20 m_add_20 m_add_20 m_add_20 m_add_20 m_add_20 m_add_20

m_mult_22 m_mult_22 m_mult_22 m_mult_22 m_mult_22 m_mult_22 m_mult_22 m_mul4172 m_mul4172

m_add_12 m_add_12 m_add_12 m_add_12 m_add_12 m_add_12 m_add_12 m_add_12 m_add_12

m_mult_16 m_mult_16 m_mult_16 m_mul4184 m_mul4184 m_mul4184 m_mul4184 m_mul4184 m_mul4184

m_add_14 m_add_14 m_add_14 m_add_14 m_add_14 m_add_14 m_add_14 m_add_14 m_add_14

m_mult_18 m_mult_18 m_mul4205 m_mul4205 m_mul4205 m_mul4205 m_mul4205 m_mul4205 m_mul4205

m_add_13 m_add_13 m_add_13 m_add_13 m_add_13 m_add_13 m_add_13 m_add_13 m_add_13

m_mult_23 m_mult_23 m_mult_23 m_mult_23 m_mult_23 m_mult_23 m_mul4216 m_mul4216 m_mul4216

m_add_10 m_add_10 m_add_10 m_add_10 m_add_10 m_add_10 m_add_10 m_add_10 m_add_10

Table 4: Unconstrained Full and Partial Mapping from Design 2 to Design 1

Furthermore, all mapping selections are purely arbitrary, including the selections for the adders.
The reasoning is as follows: the tool is given almost complete freedom to optimize and should
not be limited to specific mapping choices. It is also unreasonable to do an exhaustive
compilation of all the different mapping possibilities. Thus, the mappings are chosen at random.
The selection of which multiplier to not map is also chosen at random for similar reasoning.

 16

The following table summarizes the results of the different mappings. As noted, the full mapping
along with the upper partial mappings failed. This means that Xilinx® was unable to fit Design 2
using the groundwork laid out by Design 1. However, once enough multipliers were removed,
the design was able to run successfully.

Mapping # Frames
[Frames]

Bytes
[Bytes]

Time (Actual) [ns]

8 Mapped Multipliers Design Failed Design Failed Design Failed

7 Mapped Multipliers Design Failed Design Failed Design Failed

6 Mapped Multipliers Design Failed Design Failed Design Failed

5 Mapped Multipliers 3,203 610,570 14.000 (13.965)

4 Mapped Multipliers 3,144 567,734 14.000 (13.277)

3 Mapped Multipliers 3,510 610,702 14.00o (13.667)

2 Mapped Multipliers 3,675 556,494 14.000 (13.840)

1 Mapped Multiplier 3,973 667,886 14.000 (13.844)

0 Mapped Multipliers 3,969 671,222 14.000 (13.903)

Table 5: Experimental Data for Full and Partial Mapping

The timing constraint given to this set is not the tightest bound of 12 ns but slightly loosened to
that of 14 ns. If too tight of a timing constraint is imposed, the tool may not find a working
design. Thus, the timing is relaxed enough such that the tool has some leeway but not enough
such that performance is greatly compromised.

The graph below visually displays the number of frames needed per each mapping. Although
that the later points do not exist, a mathematical inference can still be made. The trend shows a
negative linear relationship between the number of mapped multipliers and the number of
frames. The worst result is when no multipliers are mapped back, taking up around 4,000
frames; the best result is when all eight multipliers are mapped back, using an estimated 2,600
frames (in theory). However, based on the result given in Table 5, it is clearly not possible using
unconstrained mapping.

0 1 2 3 4 5 6 7 8
2400

2600

2800

3000

3200

3400

3600

3800

4000

4200

Mapped Multipliers

Fr

am
es

Frames vs. # Mapped Multipliers

Figure 16: Number of Frames Needed vs. Number of Mapped Multipliers for Unconstrained Mapping

 17

The relationships pertaining to the number bytes needed, however, is not as clear cut as it is for
the number of frames. The data points are scattered about with no clear relationship between
the number of mapped multipliers and the number of bytes needed.

0 1 2 3 4 5 6 7 8
4

4.5

5

5.5

6

6.5

7 x 105

Mapped Multipliers

B

yt
es

Bytes vs. # Mapped Multipliers

Actual # Bytes
Estimated # Bytes

Figure 17: Number of Bytes Needed vs. Number of Mapped Multipliers for Unconstrained Mapping
There is a negative linear relationship between the number of bits and the number of mapped
multipliers but the correlation coefficient is low, around 60%. Although it is not clear as to how
the mapping specifically affects the number of bytes, it is clear that the more multipliers mapped
back, the greater the amount of bit savings.

6.4. Constrained Mapping
With unconstrained mapping, the design or task is flattened – the hierarchy of each individual
component is lost. However, with constrained mapping, not only is the overall hierarchy
preserved but also each component has a specific location on the FPGA board. This strategy of
constrained mapping comes with both a major pro and con. The advantage is that the designer
now has more control over module placement. This leads to an increase in predictability – the
variations in results can be mapped back to the modifications of the design alterations. The
disadvantage is board usage, as shown in Figure 18. Pictured above is the same design except the
left is unconstrained while the right had placement constraints. Note that this design, when
constrained, takes up more room than the unconstrained version. Note that the top multiplier
(turquoise) in the constrained version cannot fit in the bottom half if kept in tact but can fit if
separated.

Unconstrained Constrained
Figure 18: Two Different Implementation of Design 2

 18

The other major concern lies within the physical location of each logic component. The
placements of each module does affect whether the mapping’s success. Take the following
example of two different module arrangements of Design 2. The placement of the left picture
yielded a successful test run while the one on the right did not. As with any other arrangement,
each module must have enough resources both for itself and for its connections to other
modules. The failure of the design could be due to lack of available resources – it is possible that
the modules that were connected in the dfg could not reach one another due to distance or
routing congestion.

 Successful Unsuccessful

Figure 19: Two Different Placements of Design 2
The facts that each module has a strictly set location and that the logic of the components is
non-sharable leads to a less efficient use of both board space and resource. However, by relaxing
area minimization requirements, the design is able to run, even with a complete full mapping
from Design 2 to Design 1. The table below shows the different full mappings. Note that every
single trial succeeded due to the use of proper placement and area constraints. The unmapped
(but still constrained) multiplier in Design 2 is shown in red.

Design 2 Mapping 1 Mapping 2 Mapping 3 Mapping 4 Mapping 5 Mapping 6 Mapping 7 Mapping 8

mul4100 mult_16 _16 mult_15 mult_15 mult_24 mult_24 mult_18 mult_18 mult_16 mult_16 mult_17 mult_17 mult_21 mult_21 mul4100 mul4100

mul4102 mult_15 mult_16 mult_23 mult_23 mult_24 mul4102 mult_15 mult_18

mul4104 mult_21 mult_17 mult_22 mult_24 mult_18 mult_21 mul4104 mult_15

mul4107 mul4107 mult_18 mult_21 mult_15 mul4107 mult_24 mult_23 mult_17

add_sub4114 add_10 add_9 add_26 add_9 add_12 add_11 add_10 add_13

mul4140 mult_22 mult_21 mult_18 mul4140 mult_22 mult_15 mult_16 mult_21

add4141 add_20 add_10 add_25 add_11 add_25 add_20 add_13 add_14

mul4172 mult_17 mult_22 mult_17 mult_21 mult_23 mult_22 mult_24 mult_16

add4173 add_19 add_11 add_20 add_26 add_13 add_12 add_25 add_20

mul4184 mult_23 mult_23 mult_16 mult_17 mult_21 mult_16 mult_18 mult_24

add_sub4185 add_25 add_12 add_19 add_20 add_10 add_14 add_9 add_12

mul4205 mult_18 mult_24 mult_15 mult_16 mult_17 mult_18 mult_22 mult_23

add_sub4206 add_11 add_13 add_14 add_12 add_9 add_13 add_20 add_10

mul4216 mult_24 mul4216 mul4216 mult_22 mult_15 mult_23 mult_17 mult_22

add4217 add_26 add_14 add_13 add_25 add_14 add_10 add_12 add_9

Table 6: Different Constrained Full Mappings of Design 2 onto Design 1

 19

6.4.1. Full Mapping without Wrappers
Using the full mappings given, the table below lists the results of each trial. Each mapping uses
the successful arrangement as presented in Figure 19. Note that for these particular set of
experiments, the modules do not have any wrappers around them. There are two reasons for
doing so, the first being that if the entire module is mapped, then there should not be any
difference in the modules from one design to the other. The second reason is that in the case
that there is a difference, these numbers will be used as a baseline for comparison purposes.

Mapping Without Wrappers # Frames [Frames] # Bytes [Bytes] Time (Actual) [ns]

Design 2 (Unconstrained) 5,404 839,408 14.000 (14.000)

Mapping 1 3,250 598,848 14.000 (13.900)

Mapping 2 3,357 609,368 14.ooo (13.861)

Mapping 3 3,205 594,516 14.000 (13.917)

Mapping 4 3,269 594,244 14.000 (13.959)

Mapping 5 3,296 606,724 14.00o (13.936)

Mapping 6 3,253 597,752 14.000 (13.984)

Mapping 7 3,283 607,348 14.000 (13.965)

Mapping 8 3,284 594,749 14.000 (13.875)

Table 7: Experimental Data for Constrained Full Mapping

0 1 2 3 4 5 6 7 8
3000

3500

4000

4500

5000

5500

Mapping #

Fr

am
es

Frames vs. Mapping

The timing constraint for these trials, like the unconstrained case, is relaxed slightly to give the
tool more leeway when performing optimization algorithms. From the results, it is likely that the
recorded times are not optimal, as they do not hit the constraint dead on, but they are close. To
see the amount of savings earned by the use of full mapping, the first trial is the second design
implemented with no constraints – the tool has every available freedom to perform its own
optimization techniques.

Figure 20: Number of Frames Needed vs. Various Constrained Mappings for Constrained Full Mapping

According to the above graph, the unconstrained version needs slightly less than 5,500 frames
to reconfigure. However, compared to any other mapping arrangement, the number of frames
drops roughly by 2,000. This drastic reduction in frames then reaffirms the importance of
mapping and proper placement when moving from one design to another. Note, however, that

 20

the mapping choices for the multipliers do not significantly affect the savings, as the results were
relatively constant.

The graph below displays the actual number (red) and the estimated number (blue) of bytes
needed. There is a substantial difference between the two, implying that there is a large
overhead involved when doing partial reconfiguration. However, as the difference between each
individual point is relatively constant throughout each of the different mappings, the
relationship between frames and bytes can be easily modeled by a mathematical equation.

0 1 2 3 4 5 6 7 8
5

5.5

6

6.5

7

7.5

8

8.5

9 x 105

Mapping #

B

yt
es

Bytes vs. Mapping

Actual # Bytes
Estimated # Bytes

Figure 21: Number of Bytes Needed vs. Various Constrained Mappings for Constrained Full Mapping

6.4.2. Full Mapping with Wrappers
This section uses the exact same placements as the previous section except that both input and
output wrappers are included for each multiplier mapped. The purpose of the wrappers is to
further control the multipliers when switching from one design to the next. They are employed
in order to limit the routing difference caused by the changing positions of the inputs and
outputs. The wrappers are placed such that all I/O pins of the modules were facing toward the
center of the board. Note that this configuration contradicts the previous statement made about
the optimal arrangement of wrappers for multipliers that have a frame height of 1. The
reasoning behind this is that all the wiring will meet at one general location and only that
location will need to be reconfigured. The table below lists the wrapper results.

Mapping With Wrappers # Frames [Frames] # Bytes [Bytes] Time (Actual) [ns]

Design 2 (Unconstrained) 5,130 760,793 14.000 (13.930)

Mapping 1 1,955 380,565 14.000 (13.095)

Mapping 2 1,983 379,417 14.ooo (13.580)

Mapping 3 1,920 365,837 14.000 (13.753)

Mapping 4 1,972 386,277 14.000 (13.559)

Mapping 5 1,965 375,981 14.00o (13.525)

Mapping 6 1,971 377,725 14.000 (13.095)

Mapping 7 1,977 383,849 14.000 (13.095)

Mapping 8 1,992 385,594 14.000 (13.095)

Table 8: Experimental Data for Full Mapping plus Wrappers

 21

0 1 2 3 4 5 6 7 8
1500

2000

2500

3000

3500

4000

4500

5000

5500

Mapping #

Fr

am
es

Frames vs. Mapping

The unconstrained value, having a base value of around 5,000 frames, is significantly higher
than any other mapping arrangement. When using wrappers, the number of frames needed for
reconfiguration dropped more significantly than before. This further reinforces the effectiveness
of the wrapper – they give the design more stability when switching from one task configuration
to another.

Figure 22: Number of Frames Needed vs. Various Mappings for Full Mapping with Wrappers

Recall that when wrappers were not used, it took roughly 3,500 frames to reconfigure. Note that
each data point settles around 2,000 frames. This further reduction of 1,500 frames shows that
to have a great result, the dominant modules need wrappers to limit the routing change. From
the original 5,500 frames, this model of using area constraints with wrappers has a savings of
roughly 3,500 frames, which is a reduction of over 50%.

0 1 2 3 4 5 6 7 8
2

3

4

5

6

7

8

9x 105

Mapping #

B

yt
es

Bytes vs. Mapping

Actual # Bytes
Estimated # Bytes

Figure 23: Number of Bytes Needed vs. Various Mappings for Full Mapping plus Wrappers

The number of bytes needed has also been reduced by a sizeable amount, going from around
60,000 bytes to 40,000 bytes, a drop of roughly a third of the total amount. Note that the
overhead amount is also lessened. As there are fewer frames to reconfigure, the need to store
any extra addresses is not as pressing as before.

 22

6.5. Reverse Mapping
As demonstrated in the previous sections, not only is the placement of the modules important
but also the interface needs to be fixed along with the module itself. The final set of experiments
tests if there is a preference between mapping Design 2 onto Design 1 or vice versa. The results
are based on the methodology described in the previous sections. Recall that Design 1 has one
fewer multiplier than Design 2, so for this set of mappings, all multipliers from Design 1 will be
mapped back to that of Design 2’s with one random multiplier omitted.

Design 1 Mapping 1 Mapping 2 Mapping 3 Mapping 4 Mapping 5 Mapping 6 Mapping 7 Mapping 8

add_9 add_9 add_sub4114 add_sub4185 add4173 add_sub4114 add4141 add_9 add_9

add_10 add_sub4114 add_10 add4141 add_10 add_sub4206 add_10 add4173 add_10

add_11 add_11 add_sub4185 add_sub4206 add4217 add_11 add_sub4185 add4217 add4173

add_12 add4141 add_12 add_12 add_sub4114 add_12 add_12 add_12 add_sub4206

add_13 add_sub4206 add4217 add_sub4114 add_13 add_13 add_13 add_sub4114 add4141

add_14 add_14 add4141 add_14 add_14 add_sub4185 add4173 add_sub4206 add_14

mult_15 mul4100 mul4216 mul4102 mul4104 mul4140 mul4100 mul4172 mul4205

mult_16 mul4216 mul4107 mul4107 mul4102 mul4100 mul4205 mul4140 mul4216

mult_17 mul4104 mul4184 mul4140 mul4107 mul4102 mul4216 mul4104 mul4172

mult_18 mul4205 mul4100 mul4184 mul4100 mul4104 mul4102 mul4100 mul4107

add_19 add4173 add_19 add4173 add_sub4206 add4141 add_19 add_sub4185 add_19

add_20 add_20 add_sub4206 add_20 add_20 add4173 add4217 add_20 add4217

mult_21 mul4172 mul4104 mul4104 mul4140 mul4205 mul4172 mul4102 mul4184

mult_22 mul4107 mul4102 mul4216 mul4216 mul4216 mul4107 mul4184 mul4140

mult_23 mul4140 mul4205 mul4172 mul4205 mul4184 mul4140 mul4216 mul4102

mult_24 mul4184 mul4172 mul4205 mul4184 mul4172 mul4104 mul4107 mul4100

add_25 add_sub4185 add_25 add4217 add_sub4185 add_25 add_sub4206 add4141 add_sub4114

add_26 add4217 add4173 add_26 add4141 add4217 add_sub4114 add_26 add_sub4185

Table 9: Different Mappings from Design 1 onto Design 2

The results given below are done using implementations using area constraints with wrappers.
Note the actual times relative to the timing constraint is much looser than before, implying that
there is room for optimization.

Reverse Mapping # Frames [Frames] # Bytes [Bytes] Time (Actual) [ns]

Design 1 (Unconstrained) 4,930 660,852 14.000 (12.811)

Mapping 1 1,928 327,226 14.000 (13.468)

Mapping 2 1,949 327,118 14.000 (13.468)

Mapping 3 1,938 339,462 14.000 (13.468)

Mapping 4 1,773 303,246 14.000 (13.468)

Mapping 5 1,903 317,534 14.000 (13.468)

Mapping 6 1,962 335,466 14.000 (13.468)

Mapping 7 1,791 301,578 14.000 (13.175)

Mapping 8 1,797 323,479 14.000 (13.468)

Table 10: Experimental Data for Reverse Mapping

 23

When the design mapping is reversed, the total number of frames needed falls around 5,000.
However, when constrained and using wrappers, Design 1 only needs around 2,000 frames to
reconfigure. This drastic drop in frames is similar to the results obtained during regular
mapping. However, there is more variation between the different mappings. As there is a
multiplier missing from the first design to the second, some of the mapping arrangements make
better, more efficient use of the board than others. As these mappings use up less real estate,
they require fewer frames (and thus fewer bytes) to reconfigure.

0 1 2 3 4 5 6 7 8
1500

2000

2500

3000

3500

4000

4500

5000

Mapping #

Fr

am
es

Frames vs. Mapping #

Figure 24: Number of Frames Needed vs. Various Mappings for Reverse Mapping

In Figure 25, note the difference between the estimated number of bytes (blue) and the actual
number of bytes (red). Compared to the normal mapping, the overhead needed for this design is
significantly smaller. Note that the difference is minute and that the overhead needed is
substantially less than the overhead needed for the previous design. This significant difference
in results implies that the order in which the tasks are reconfigured and mapped plays an
important role in optimization.

0 1 2 3 4 5 6 7 8
2

3

4

5

6

7

8 x 105

Mapping #

B

yt
es

Bytes vs. Mapping

Actual # Bytes
Estimated # Bytes

Figure 25: Number of Bytes Needed vs. Various Mappings for Reverse Mapping

 24

7. Future Work
The research reported in this paper has dealt with some of the fundamental issues that are in
involved in the minimization of bit usage during partial reconfiguration. Using this as the base
knowledge, there is a plethora of different venues to explore. Two of these topics, placement
logistics and systematic layout design, are discussed in greater detail below.

The first possible extension lies in the logistics of module placement. As noted earlier in this
paper, the placement of the modules within the FPGA board plays a fundamental role in
determining the successful implementation of a design. However, the exact reasoning as to why
one placement arrangement works and another arrangement fail is still unknown. A variety of
reasons, including wire congestion, I/O problems, and module locations, attributes to a higher
probability of failure but which setback is the most deadly? Not only do the causes of failure
need to be known but also the severity.

Another option is to come up with an algorithm to systematically determine the optimum floor
plan of each incoming task if given a sequence of dataflow graphs. The algorithm will start by
taking each dfg and finding module arrangements (each related to each other) such that bit
reconfiguration is minimized. Building upon the first topic, not only does each arrangement
yield the smallest change bit-wise but the design must also run given the previous task’s layout.

8. Conclusion
The introduction of partial reconfiguration has immensely increased both the flexibility and
versatility of FPGAs. Now with the ability to dynamically change its course and to program on a
new task, FPGAs can now accommodate even the most complex schedules. To understand and
figure out the benefits and uses of partial reconfiguration then is a matter of great importance.

The optimization of bit minimization must be taken in steps, as the behavior of each individual
component must be understood before the applying it to a larger system. This paper has
demonstrated that the different constraints and considerations all interrelate to one another.
Floor planning, for example, not only affects the minimization of real estate but also whether or
not the design is executable. Although listed above are only two future work topics, there is no
limit of potentially interesting problems that relate to FPGA partial reconfiguration.

 25

9. References

[1] I. Kennedy. “Exploiting Redundancy to Speedup Reconfiguration of an FPGA”. In
Lecture Notes in Computer Science, Vol. 2778, pg. 10, 2003

[2] M. Rullmann, S. Siegel, and R. Merker. “Optimization of Reconfiguration Overhead by

Algorithmic Transformations and Hardware Matching”. In 19th IEEE International
Parallel and Distributed Processing Symposium (IPDPS ’05), 2005.

[3] Xilinx. “Development System Reference Guide”. http://support.xilinx.com.

 26

