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Abstract. With the novel feature of partial reconfiguration, FPGAs (field programmable gate 
arrays) have the potential to become even more powerful and versatile. The ability to 
reconfigure during run-time offers improvement in task flow and reduction for total time 
required. This development of dynamic programming then leads to the problem of module 
placement – given a series of tasks, what is the best implementation of each task such that the 
amount of time needed for partial reconfiguration is minimized? To solve this problem, both the 
placement and interface of the logic components must be taken into account. This paper not 
only discusses the behavior of standalone modules but also looks at how they behave when part 
of a bigger, more complex system.  
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1. Introduction 
A built-in feature of the Virtex-4TM FPGA (field programmable gate array) board, partial 
reconfiguration gives users the luxury to modify the contents of the FPGA board during runtime. 
Without the usage of partial reconfiguration, only static programming was available – once the 
board is written to, it cannot be changed. With partial reconfiguration, however, the concept of 
dynamic programming is introduced – part of the board can be modified whilst the rest remain 
untouched. Not only does partial reconfiguration allow the support the execution of different 
tasks on a single FPGA board, it also can potentially decrease the total amount of time needed 
for task execution.  
 
Partial reconfiguration is a process in which bits are streamed serially and reprograms the FPGA 
board column by column or frame by frame.  To optimize the amount of time needed to partially 
reconfigure, the number of bits required must be minimized. This then leads to the observation 
of shared logic components. If two tasks, Task 1 and Task 2, both share a common module, for 
example a 32-bit multiplier, there is no reason to overwrite the Task1’s 32-bit multiplier – the 
common module could be used for Task 1 and then reused for Task 2. By reusing a module, the 
number of bits needed to reconfigure from Task 1 to Task 2 potentially decreases. 
 
2. Motivation 
The process of partial reconfiguration is advantageous both in terms of time and space.  Between 
any two given tasks, the more shared logic components there are, the higher the potential to 
save on the number of bits. Even in the worst case, if there are no common components between 
the two tasks, partial reconfiguration is still cheaper, both in terms of area and time, than 
reprogramming the entire board.  
 
Not only can partial reconfiguration drastically save on the amount of time needed for task 
transition, it also can reduce on the amount of real estate needed. The area used to support 
modules only found in Task 1 can easily be used to support modules only found in Task 2. With a 
combination of both static and dynamic programming, not only can the flow of task execution be 
improved but also the total amount of time needed can be reduced. 
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3. Related Work 
In the field of partial reconfiguration, there has been a substantial amount of work done already. 
In particular, there are two subtopics of interest – bit difference and algorithmic mapping. It has 
been shown that given a typical reconfiguration bit stream, less than 3% of the total bits differ 
[2]. However, because the bits are scattered about in many different frames, the reconfiguration 
cost grow exponentially larger. Following up on this problem, a technique has been developed to 
alter the granularity of reconfiguration, namely going by individual bits instead of the number of 
frames. The results show a competitive reduction in costs, around the order of 80%. 
 
The second important piece of research done shows that purposeful (non-arbitrary) mapping 
significantly reduces reconfiguration costs [1]. The work done generalizes this process using 
high-level algorithmic blocks which are analogous to the logic components discussed in this 
paper. The algorithm described specifies a partitioning method to match up components based 
on both resource usage and execution time. The work done in this paper uses a simplified 
version of the previously mentioned method. Namely, the mapping is done on a smaller scale 
and is manually chosen to match up modules that perform the exact same task.  
 
The groundwork of this paper is built upon the previous findings. The work done extends upon 
that foundation and looks at (ultimately) reconfiguration savings between two designs. The 
results discussed specifically focuses on the FPGA Virtex-4TM board and its logic components. 
 
4. Problem Description 
The overall goal to reduce the total amount of time hinges on the amount of transition time 
needed between tasks. Specifically, the number of bits needed to partially reconfigure must be 
minimized. This then leads to the question of module placement – given a series of tasks, what 
is the optimal placement of logic components such that bit reconfiguration is minimized? 
Within this problem, there are two main issues to consider: the physical placement and the 
interface of the modules.  
 
To better understand how each consideration affects the number of bits needed, different 
constraints must be placed on the logic components. There are three constraints considered: 
real estate, number of frames and bits, and timing (clock frequency). Each aspect is important to 
consider, as each affects the module placement and performance differently. The constraints are 
designed in concurrence with the others, as they are all interrelated. 
 
4.1. Preliminaries 
A module is a catch-all term for any logic component that uses both inputs and outputs. This 
includes, but is not limited to, adders, multipliers, and dividers. This paper mainly focuses on 
multipliers, as out of the three, they are the dominant components. All synthesis and 
implementation of the modules is done using the Xilinx® ISE v7.1 software bundle.  The 
modules themselves are generated using CORE Generator and are placed on the Virtex-4TM 
FPGA board.  
 
4.2. Considerations 
To further clarify the constraints imposed on the designs, the following explains in detail what 
each constraint entails. 
 
4.2.1. Real Estate 
The amount of space needed on the FPGA is perhaps the easiest to visualize. The foremost 
concern is that the module must fit onto the chosen board. It is highly unlikely that in any given 
design only one module is used, so the amount of room per module should be minimized. The 
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space is measured in terms of slices or configurable logic blocks (CLBs); two slices equate to one 
CLB. Note that the area refers to the entire implemented version – namely, it not only includes 
the logic but also the routing required. The areas reported in this paper only refer to the 
specified constrained area – the actual area of the module will be slightly greater due to routing. 
 
When implementing modules, not only does physical space of the module matter but also the 
shape of the module. The Xilinx® software package allow the modules great flexibility, as they 
can be any rectangular shape. However, with the overall goal in mind, to reduce the number of 
bits needed to reconfigure, the shape of the module will follow in accordance to frame height, a 
subject discussed in greater detail in the section below. 
 
4.2.2. Timing 
The strictest constraint of all, the clock frequency in which a module operates under does not 
have as much leeway as the previously mentioned constraints. If timing cannot be met, then the 
entire design must be modified such that the time the module runs under is acceptable. Thus, 
whenever using Xilinx®, a tight timing constraint needs to be specified – the tool only checks if 
the timing constraint is met and will not optimize further if the current design passes. The 
caveat to this is that if the timing constraint is too tight, then occasionally the tool is not able to 
meet it. When the tool fails, it fails miserably and gives a much worse ‘actual’ timing than if a 
slightly looser timing constraint was given. 
The timing constraint also affects the design, namely the routing, of the implemented module in 
two ways: congestion and wire type. The tighter the timing constraint, the more chaotic the 
routing becomes. To alleviate this problem, it is possible to loosen the timing constraints slightly 
to achieve a better implementation. A tighter timing constraint would also employ the use of 
short (faster) wires. 
 
If too loose of a constraint is imposed, it is possible for Xilinx® to use long (slower) wires and 
save the short wires for other more modules that have stricter requirements. For all modules 
implemented, the timing, given as the clock period, is restricted on the nanosecond [ns] scale. 
 
4.2.3. Frames and Bits 
During partial reconfiguration, the number of frames to reprogram directly correlates to the 
number of bits to reprogram. 

The conversion factor is as follows: 
40 words 4 bytes 8 bits1 frame 1280 bits
1 frame 1 word 1 byte

× × × = . 

As a rule of thumb, every CLB is approximately equal to 22-23 frames. If even one bit in the 
entire frame needs to be reprogrammed, then the entire frame needs to be reprogrammed. Thus, 
it is important that the each frame is used to its fullest extent. For the Virtex-4TM FPGA board, 
each frame spans a height of 16 CLBs or 32 slices (1 CLB = 2 slices). Thus, it is advantageous that 
all modules are designed in accordance with frame height (every 16 CLBs). All modules then are 
designed in the following manner: the height of the module is first determined with respect to 
the frame height and the width is minimized afterwards. 
 
4.3. Formulation 
The approach for minimizing the number of bits during partial reconfiguration is broken down 
into four main sections: single modules, merged modules, interface, and design integration. The 
first three sections deal with standalone implementations. Once individual components are 
understood, they can be integrated within larger and more complex designs.  
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4.3.1. Analysis of Single Modules 
The algorithm begins by looking at the single logic components. These are, but not limited to, 
adders, multipliers, and dividers. The data of primary interest involves the optimal sizing of the 
module and the number of frames (and consequently the number bits) needed during partial 
reconfiguration. The data is measured across different standard (8, 16, and 32) input bit-widths.  
This paper’s discussion primarily focuses on multipliers as they are the dominant component 
out of the three mentioned modules. 
  
4.3.2. Analysis of Merged Modules 
This section focuses on what happens when multiple single modules are merged together as a 
single module. The purpose is to see if there is any advantage into grouping separate modules as 
one instead of mapping each single module separately. The discussion focuses on the multiplier-
adder, or MAC, a common component used in many designs. 
 
4.3.3. Analysis of Module Interface 
Finishing up standalone modules, this section discusses how interface affects module behavior. 
In this section the modules’ interface (inputs and outputs) are bound in specified areas, whilst in 
the previous two sections the inputs and outputs were left unconstrained. The empirical data 
collected for this section uses multipliers using similar reasoning as above. 
 
4.3.4. Dataflow Graph Design Integration 
After individual analysis of modules and module interface, the logic components are then 
implemented as part of a bigger design given by dataflow graphs (dfgs). As the name implies, 
data flow graphs only provide the flow of the data and not the implementation. Thus, using two 
different dfgs, various arrangements are tested to see the effects of module placement. Different 
mappings are also done to see how mapping affects the performance of the designs. 
 
 
5. Individual Analysis 
Based on the approach specified above, the methodology of each section is explained in greater 
detail. The conclusions are then discussed based on the various experiments’ results. 
 
As further clarification, the column heading are defined as follows: 
• Area? – A yes/no field denoting whether area constraints were placed on the module. 
• Time (Actual) – The given timing constraint and the actual running time (in parenthesis). 
• Width – The number of slices needed for the module length-wise (x-direction). 
• Height – The number of slices needed for the module height-wise (y-direction). 
• Total Area – The total real estate needed on the FPGA board for logic placement ONLY. 

Note that this does not include extra routing. 
• Frames Needed – The number of frames needed to reconfigure as given by Bitgen, a 

program part of the Xilinx® software package. 
• .bit Size – The size of the .bit file generated by Bitgen which specifies the exact number of 

bits needed to reconfigure. Note that this field is given in terms of bytes and not bits. 
 
The other clarification point relates to the generated graphs. As shown, the independent axis 
displays frame height. However, note that there is a data point at a supposed frame height = 0. 
This, of course, is not feasible. This data point signifies the module when no area constraints are 
introduced – the purpose is to see what Xilinx® would do if given no boundaries. 
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5.1. Single Modules 
The discussion focuses primarily on 32-bit multipliers, as they not only are commonly used 
components but also are large enough to show clear trends and results. The data is summarized 
in the table below. 

Table 1: Experimental Data for 32-Bit Multipliers 

32-Bit Multiplier 

Area? Time (Actual) [ns] 
Width 
[slices] 

Height 
[slices] 

Total Area 
[slices2] 

Frames Needed 
[frames] 

.bit Size 
[bytes] 

no 12.000 (11.946) 28 48 1,008 633 114,645 

yes 12.000 (11.868) 32 26 832 354 63,653 

yes 12.000 (11.997) 12 60 720 295 52,289 

yes 12.000 (11.951) 8 92 736 316 56,537 

yes 12.000 (11.975) 6 120 720 400 75,453 

yes 12.000 (11.979) 4 192 768 548 108,201 

 
5.1.1. Real Estate 
According to the synthesis report generated by Xilinx®, the 32-bit multiplier needs 591 slices 
purely for logic. As shown from the table above, the area (along with the dimensions) used 
clearly exceed this number. The extra space is used for routing during implementation – not 
only does the logic need to be placed but the routing also must be possible given the logic layout. 
The area and dimensions displayed in the table (as noted above) is the bounding box specified 
when implementing the module. Note that for the given data the logic is completely placed 
within the bounds but some wires may still be outside. This becomes more evident as the 
module width becomes smaller. 
 
The graph below shows the relationship between frame height and the total area needed. 
Observe that the when the tool is not given an area constraint, the module uses up substantially 
more space than any other constrained arrangement. Thus, it is an advantage to specify area 
constraints as to limit the amount of board usage. 
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Figure 1: Constrained Area vs. Frame Height of 32-Bit Multipliers 
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As the frame height increases, note that beyond the first frame height, the area needed for the 
multiplier stays relatively constant with the exception at the frame height of one. The reason for 
the slightly larger area is that for a frame height of one (limit 16 CLBs) the multiplier’s width 
must be at least 16 CLBs. This then causes the minimal dimensions to be 16 by 13. Going beyond 
the first frame height, the required area stays around 750 slices. This then implies that the 
regardless of the shape or frame height, no extra area is needed. Thus, the module shape is 
flexible and is not limited or dependent upon the frame height. However, the module must have 
some type of constraint imposed, as the unconstrained result is worst out of the entire data set. 
 
5.1.3. Timing 
The amount of time needed for the multiplier to run falls slightly under 12 nanoseconds 
consistently for each trial. The imposed constraint of 12 ns is a relatively tight bound, as the 
multiplier is unable to perform under 11 ns. Table 1 shows the amount of time needed for each 
trial. The data shows consistently that for any given 32-bit multiplier, the time required to run is 
slightly below 12 ns. If necessary, the timing can be reduced slightly, but not much more than 
the current results. 
 
5.1.4. Frames and Bytes 
Below shows the frames and bytes needed to implement a standard 32-bit multiplier. Figure 2 
displays two curves – an estimated value of the number of frames based on the constrained area 
and the actual number of frames needed for implementation. Notice that toward the smaller 
frame heights (unconstrained, 1, and 2), the estimate and actual numbers are similar. The 
estimated curve (blue) shows that the number of frames stays relatively constant, regardless of 
frame height. However, the actual curve (red) shows that there is a minimum at the frame 
height of 2 at which the number of frames is minimized. This deviation implies that as the shape 
of the implemented module becomes taller, the wiring plays a more and more noticeable role in 
determining the number of frames needed. As the module width becomes narrower, it becomes 
increasingly difficult to fit all the logic and the wiring inside a given width. Thus, it is important 
to not only take the logic needed into consideration but also the wiring that goes outside the 
bounded area. 
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Figure 2: Number of Frames vs. Frame Height of 32-Bit Multipliers 
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Figure 3 also shows two curves – an estimated number of bytes and the actual number of bytes 
needed to reconfigure a 32-bit multiplier. The estimated number of bytes is based on the actual 
number of frames – each data point is the number of frames converted to bytes. Note that there 
is a difference between the two curves. This shows that in order to reconfigure the multiplier, the 
number of frames is not the sole, albeit major, contributor to the number of bytes needed. The 
extra number of bytes needed is the overhead of reconfiguration. This includes, but is not 
limited to, the addresses of each frame needing to be modified.  
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Figure 3: Number of Bytes vs. Frame Height of 32-Bit Multipliers 
 
Another point of interest is that there is a relatively uniform distance between the two curves 
shown in Figure 3. This similar difference implies that the regardless frame height, the overhead 
needed stays relatively constant.  This shows that the overhead needed is not based upon the 
shape of the module and is a constant amount regardless of implementation choices. From the 
graph, it is clear that the number of bytes is minimized at the frame height of 2 with 3 coming in 
at a very close second. 
 
5.2. Merged Modules 
The following table summaries the results for 32-bit multiplier-adders or multiplier-
accumulators, more commonly known as MACs. Note that the area needed is comparable to the 
standalone multiplier but uses up more frames and bits. The MAC, if combined, is treated as one 
module by the tool and is able to fit in less space than the two separate components. 

Table 2: Experimental Data for 32-Bit Multiplier-Adders 

32-Bit Multiplier-Adder 

Area? Time (Actual) [ns] 
Width 
[slices] 

Height 
[slices] 

Total Area 
[slices2] 

Frames Needed 
[frames] 

.bit Size 
[bytes] 

no 12.000 (11.996) 36 22 792 430 74,824 

yes 12.000 (11.984) 32 26 832 386 67,392 

yes 12.000 (11.907) 12 62 744 337 60,068 

yes 12.000 (11.984) 8 92 736 326 56,732 

yes 12.000 (11.991) 6 124 744 368 67,224 
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5.2.1. Real Estate 
The 32-bit multiplier-adder needs a total of 605 slices for logic – 591 from the multiplier and 16 
from the adder. However, the data shows numbers greater than the base value. This is again due 
to the routing and extra wiring needed for implementation. The graph below shows the general 
trend of how much real estate is needed as frame height increases. 
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Figure 4: Constrained Area vs. Frame Height of 32-Bit Multiplier-Adders 
 
One interesting point is that when the module is implemented unconstrained, the result is 
actually better than if the module has a frame height of 1. This could be due to the fact that 
because the component is very common, the tool knows how to optimize this specific case. 
Another reason could be that the multiplier-adder is not ideally implemented when forced to 
have to a frame height of 1. Like the standalone 32-bit multiplier, in order to have a frame height 
of 1, the width must be at least 16 CLBs (or 32 slices). Given this as a lower bound, the module’s 
height does not stretch to the full 16 CLBs and only needs 13 CLBs. This reduction in height then 
leads to an unfortunate increase in the number of frames, a topic discussed in more detail in an 
upcoming section. 
 
Another similarity between the multiplier and the MAC is that beyond the first frame height, the 
amount of area needed stays relatively constant and settles around 750 slices. This area is very 
comparable to the amount of space needed for a lone 32-bit multiplier. This then implies that 
the adder is integrated together with the multiplier to save space on the FPGA board and is 
cheaper than implementing a multiplier and an adder separately. As the trends for the MAC are 
similar to that of the standalone multiplier, it is clear that between the multiplier and the adder, 
the multiplier is the dominant component. 
 
5.2.2. Timing 
The table on the previous page lists the time required for the MACs for each frame height. Like 
the multiplier, the timing constraint of 12 ns is a relatively tight bound. The amount of time 
needed for the adder is negligible, even if the adder’s output is registered. As before, the timing 
is predominantly influenced by the multiplier, so this component is very hard-pressed to run 
any faster than using a 12 ns clock cycle. 
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5.2.3. Frames and Bits 
The graphs below depict the trends for the number of frames and the number of bits needed for 
the MAC. In Figure 5, the blue curve shows an estimated number of frames (manually estimated 
from FPGA Editor) and the curve in red shows the actual number of frames (given by Bitgen). As 
given by the graph, the both curves lead to different conclusions. The estimated curve levels off 
at a constant value of around 275 frames but the actual curve finds a minimum at a frame height 
of 3 (a frame height of 2 comes at a close second). Due to the wiring that falls outside the 
bounding box, the estimated number of frames is substantially lower than that of the actual.  
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Figure 5: Number of Frames vs. Frame Height for 32-Bit Multiplier-Adders 
 
In Figure 6 depicts the trends of the actual number of bytes needed (red) and the estimated 
number of bytes needed based on the number of frames (blue). Note that the gap between the 
two curves is smaller than the gap for the standalone multiplier but the overall number of bytes 
is greater. As there are more frames to reconfigure, the number of bytes needed also increases. 
Because this module is relatively dense (logic is packed tightly), the frames are close to one 
another, cutting down on the number of addresses needing to be stored significantly. The 
similar shape of the two curves also implies that the amount of overhead is readily predicable. 
 
 

0 1 2 3 4
5

5.5

6

6.5

7

7.5 x 104

Frame Height

# 
B

yt
es

# Bytes vs. Frame Height

Actual # Bytes
Estimated # Bytes

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Number of Bytes vs. Frame Height for 32-Bit Multiplier-Adders 
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5.3. Overhead for Modules 
Figure 7 shows the trend between the number of bytes and the number frames needed. The data 
not only includes a compilation of experiments mentioned above, but also some external 
experiments that are not discussed in this paper. 
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Figure 7: Number of Frames vs. Number of Bytes Needed for Modules 
 
From the graph, there is a strong linear correlation between the number of frames and the 
number of bytes needed for partial reconfiguration. This data also takes into account the 
overhead required to implement. The multiplier and the multiplier-adder are both contiguous 
logic components, so the relationship is predictable – there are no substantial gaps in the logic 
modules to lead to strong variation. 
 
5.4. Module Interface 
The final standalone set of experiments done also involves multipliers on this time incorporates 
interface. The previous data only controlled the module shape and not where the inputs and 
outputs are located. In order to effectively control the direction of data, the I/O needs to be 
specified. This is extremely important during partial reconfiguration, as to be able to reuse a 
component, not does the function need to match but the interface as well.  
 
To constrain the inputs and outputs, the concept of wrappers is introduced. Wrappers merely 
restricts where all the input and output pins need to lie relative to the module itself. The 
advantage of these wrappers is that they are moveable – they can be placed anywhere around 
the module, even far away (though this is counterproductive to the overall goal). However, once 
a location is chosen, the wrappers remained fixed and the entire set (module plus wrappers) is 
reconfigured. For every module (shown in blue), there are two input wrappers (shown in red) 
and one output wrapper (shown in violet). 
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Table 3 shows the results of a standard 32-bit multiplier with wrappers. Multipliers are used as 
previously they have demonstrated to be a dominant component. The dimensions of the 
wrappers are not included in the table as the extra resources used vary, depending upon the 
placement. Specifically regarding real estate, the wrappers, although taking up room during 
constraint placement, use up only a small amount of space when implemented. Note that the 
entire package (module plus wrappers) are all contained with the specified frame height. 
 

Table 3: Experimental Data for 32-Bit Multipliers plus Wrappers 

32-Bit Multiplier with Wrappers 

Area? Time (Actual) [ns] 
Width 
[slices] 

Height 
[slices] 

Total Area 
[slices2] 

Frames Needed 
[frames] 

.bit Size 
[bytes] 

no 12.000 (11.987) 36+ 22+ 1218 448 77,375 

yes 12.000 (11.972) 32+ 26+ 1050 421 75,184 

yes 12.000 (11.952) 12+ 62+ 940 385 69,687 

yes 12.000 (11.977) 8+ 92+ 946 429 80,415 

 
5.4.1. Real Estate 
The constrained area trend follows that of a multiplier with no wrappers. The unconstrained 
data point is extremely high and as frame height increases, the number of slices needed levels off 
to a relatively constant number. The wrappers also take up extra room on the board, but when 
implemented, they take up relatively little room and there is no significant increase in the 
number of frames. 
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Figure 9: Constrained Area vs. Frame Height of 32-Bit Multipliers plus Wrappers 
 
Note that the total area used has more variation than a standalone multiplier implementation. 
This is due to the placement of the wrappers – different arrangements cause the logic, and 
subsequently the routing, of the multiplier to vary.  Similar to its non-wrapper counterpart, the 
multiplier plus wrappers set needs to have a specified area constraint, as the constrained is 
worse than all other data points. 
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Figure 10 shows the different optimal arrangements of the different frame heights. Each sub-
figure includes the multiplier (purple), two input wrappers (turquoise and green), and one 
output wrapper (yellow). Notice that with a frame height of 1, the wrappers are able to fit along 
the top and bottom of the module. However, as the width becomes narrower, the result is best 
when the wrappers occupies one long column along one side.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Frame Height: 1 Frame Height: 2 Frame Height: 3 

Figure 10: Various Optimal Arrangements of Wrappers for 32-Bit Multipliers with Wrappers 
 
5.4.2. Timing 
The wrappers themselves are constructed using combination logic, so they do not contribute any 
extra to timing performance. Thus, they follow the same behavior as a regular multiplier. The 
timing constraint of 12 ns is a tight bound and each trial, with some variation, meets this timing 
requirement. 
 
5.4.3. Frames and Bits 
The graph below shows the estimated and actual number of frames needed to reconfigure a 
multiplier plus wrappers. Note that for any frame height, including the unconstrained version, 
the estimated number of frames stays the same. However, the actual number of frames clearly 
finds a minimum at a frame height of two. This is consistent with the results found for the 
standalone 32-bit multiplier. 

0 1 2 3
380

390

400

410

420

430

440

450

Frame Height

# 
Fr

am
es

# Frames vs. Frame Height

Actual # Frames
Estimated # Frames

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: Number of Frames vs. Frame Height of 32-Bit Multipliers plus Wrappers 
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The graph below shows the estimated number of bytes needed (based on the number of frames) 
and the actual number of bytes needed. The two curves are remarkably similar in shape. This 
then implies that the overhead needed is predictable. 
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Figure 12: Number of Bytes vs. Frame Height for 32-Bit Multipliers plus Wrappers 
This result is consistent with the standalone multiplier, having a minimum at a frame height of 2 
but significantly different than the multiplier-adder, which has a minimum at a frame height of 
3. However, with the MAC, a frame height of 2 yields a very close result to that of the minimum. 
Thus, a consensus can be made that across all fields, the optimal design is when the module has 
a frame height of 2. 
 
5.5. Overhead for Modules with Interface 
The graph below shows the relationship between the number of frames and the corresponding 
number of bytes needed to reconfigure a 32-bit multiplier plus wrappers. The different data 
points all includes the above mentioned results as well as outside experiments that are omitted 
in this paper. Note that there is more variation in this set, so the relationship is not as strong as 
that of the modules without wrappers. The implementation of the wrappers leaves gaps along 
the sides, causing the module to be slightly uneven. Despite the slight fluctuations, however, the 
relationship between the number of frames and of bytes is clearly linear. 
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Figure 13: Number of Frames vs. Number of Bytes Needed for Modules with Wrappers 

 13



6. Dataflow Graphs 
Now that the basic components have been covered, they can be incorporated into more 
advanced topics, namely dataflow graphs (dfgs). Dataflow graphs very elegantly show the 
execution path of inputs to outputs. Shown below are two examples of dfgs, both of which are 
used in the following experiments, where Design 1 is used as a base design and Design 2 is the 
new incoming task. The overall goal is to minimize reconfiguration time, which in turn is to 
minimize the number of bytes that differ. 
 

 
 
 

 
 

Design 1 Design 2  
Figure 14: Two Designs of Dataflow Graphs  

 
6.1. Considerations 
As dfgs only show the flow of data (like the name implies), the implementation is completely up 
to the designer. This freedom, albeit flexible, comes with a slew of design considerations. The 
remainder of this paper focuses on the mapping aspect. Mapping is a process in which, given a 
module that is common in two designs, that module is kept and reused. Note that this is 
different than overwriting one module with another module with the same functionality. The 
following highlights the different subtopics of mapping covered. 
 
6.1.1. Unconstrained Mapping 
What will Xilinx® do if left on its own? The tool itself is an optimization tool and if given no area 
constraints, it can find the best implementation for a particular design. One main reason is to 
find other aspects that need controlling for further optimization. The mapping is done 
arbitrarily but only the same components are mapped from one design to the next. This will also 
be used as a baseline to compare to the other experiments. 
 
6.1.2. Constrained Mapping 
Constrained mapping takes into account the concept of floor planning – a process in which each 
module is given a location. Instead of giving no area constraints and letting the tool go, each 
component not only has a shape constraint but also has a placement constraint. The tool is then 
forced to re-optimize based on these new user-specified constraints. This set of experiments will 
show how floor planning affects bit reconfiguration minimization. The mapping and placement 
of the modules, like the first set of experiments, are also arbitrary. 
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If the interface of a module is altered, then the logic and routing of the module will also be 
altered. Even when a component is mapped, only the logic remains the same. Thus, to eliminate 
the difference in routing, wrappers are added to direct where the inputs and outputs will go. Due 
to the different components of the design, only the multipliers will have wrappers. The 
mappings and placements will be the same as the ones of the constrained mapping.  
 
6.1.3. Reverse Mapping 
In the final set of experiments, the roles of Design 1 and Design 2 are flipped – Design 2 will act 
as the base design and Design 1 is the new incoming task. The implementation will use 
constrained mapping and take interface into account. The purpose of this set of experiments is 
too see if there is an optimal order of designs if given a series of tasks to complete. 
 
6.2. Implementation 
The implementation of dataflow graphs all follow a general guideline, as shown by Figure 15. The 
first step is to pick out a specific dfg to implement. Once the graph has been chosen, it is then 
translated into code, either Verilog or Very high speed integrated circuit Hardware Description 
Language (VHDL). Sometimes, a user constraint file (.ucf) is added to supplement the code. All 
the code is then synthesized and implemented using Xilinx®. 
 
The implementation involves three general steps: translation, mapping, and place and route 
(PAR). Specific functions of each step is explained in great detail in the Development Guide 
published by Xilinx® but is summarized in the following. The translation, or ngdbuild, step takes 
the synthesized code and converts it into a logical description of the design in terms of both the 
hierarchical components used and the lower-level Xilinx primitives. The output, an .ngd file, is 
then fed into the mapping stage, which maps the design to the target FPGA. The newly 
generated .ncd file is then fed into the PAR which, when completed, outputs another .ncd file, 
only this one is fully routed [3]. Finally, the .ncd file is sent through Bitgen which generates a 
.bit file and determines the number of bits and frames. Note that there are additional output 
files generated during the implementation stage but is omitted in this discussion. 
 
During mapping and PAR, guide files can also be specified as to help specify the placement of 
logic components. This step is strictly optional and is only used when one module in one design 
is reused. It is possible to write a batch file to execute this entire process of synthesis and 
implementation by running Xilinx® Project Navigator in Command Line Mode. The specific 
commands for each step are included in the Development Guide.  
 
 

.v or .vhdl 

.ucf 

ngdbuild map PAR 
.ngd .ncd .ncd Bitgen dfg 

.bit 

bits and 
frames 

optional 
.ncd 

optional 
.ncd 

 

 
 

Figure 15: Flow Chart of Design Synthesis and Implementation Process 
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6.3. Unconstrained Mapping 
Xilinx®, given only a timing constraint (no area constraints), removes the hierarchy of the 
individual components and find the best arrangement of the logic such that performance (time 
and/or space) is optimized. With the lack of design hierarchy, the logic slices are strewn about 
the entire board in such a way that each piece is optimized for real estate or overlap usage. This 
process is known as flattening. The other extreme of module placement is known as floor 
planning, a topic discussed in greater detail in a following section. 
 
In this set of experiments, Design 1 is implemented with no area constraints (and imposed with 
an average timing constraint) after which Design 2 is mapped back to Design 1. Table 4 below 
shows the different mapping combinations. Design 2, having nine multipliers, must leave one 
multiplier unmapped, as Design 1 only has eight multipliers. This is considered full mapping. 
The number of mapped multipliers is then decreased incrementally; this generates partial 
mapping data. This continues until no multipliers are mapped, in which case is referred to as no 
mapping. In this particular case, when a multiplier is no longer mapped back to Design 1, it is 
left unconstrained. 
 
As these particular dataflow graphs involve only multipliers and adders, the multipliers are the 
components that are removed one by one. They are the dominant components and the results 
are more noticeable than if removing adders. In the following table, the multipliers listed in 
black are the original multipliers from Design 1 while the ones in red are the ones found only in 
Design 2. Notice that in the no mapping column (o Mapped Multipliers) all multipliers are 
colored red. 
 

8 Mapped 
Multipliers 

7 Mapped 
Multipliers 

6 Mapped 
Multipliers 

5 Mapped 
Multipliers 

4 Mapped 
Multipliers 

3 Mapped 
Multipliers 

2 Mapped 
Multipliers 

1 Mapped 
Multiplier 

0 Mapped 
Multipliers 

m_mult_17 m_mul4100 m_mul4100 m_mul4100 m_mul4100 m_mul4100 m_mul4100 m_mul4100 m_mul4100 

m_mul4102 m_mul4102 m_mul4102 m_mul4102 m_mul4102 m_mul4102 m_mul4102 m_mul4102 m_mul4102 

m_mult_21 m_mult_21 m_mult_21 m_mult_21 m_mult_21 m_mul4104 m_mul4104 m_mul4104 m_mul4104 

m_mult_24 m_mult_24 m_mult_24 m_mult_24 m_mult_24 m_mult_24 m_mult_24 m_mult_24 m_mul4107 

m_add_11 m_add_11 m_add_11 m_add_11 m_add_11 m_add_11 m_add_11 m_add_11 m_add_11 

m_mult_15 m_mult_15 m_mult_15 m_mult_15 m_mul4140 m_mul4140 m_mul4140 m_mul4140 m_mul4140 

m_add_20 m_add_20 m_add_20 m_add_20 m_add_20 m_add_20 m_add_20 m_add_20 m_add_20 

m_mult_22 m_mult_22 m_mult_22 m_mult_22 m_mult_22 m_mult_22 m_mult_22 m_mul4172 m_mul4172 

m_add_12 m_add_12 m_add_12 m_add_12 m_add_12 m_add_12 m_add_12 m_add_12 m_add_12 

m_mult_16 m_mult_16 m_mult_16 m_mul4184 m_mul4184 m_mul4184 m_mul4184 m_mul4184 m_mul4184 

m_add_14 m_add_14 m_add_14 m_add_14 m_add_14 m_add_14 m_add_14 m_add_14 m_add_14 

m_mult_18 m_mult_18 m_mul4205 m_mul4205 m_mul4205 m_mul4205 m_mul4205 m_mul4205 m_mul4205 

m_add_13 m_add_13 m_add_13 m_add_13 m_add_13 m_add_13 m_add_13 m_add_13 m_add_13 

m_mult_23 m_mult_23 m_mult_23 m_mult_23 m_mult_23 m_mult_23 m_mul4216 m_mul4216 m_mul4216 

m_add_10 m_add_10 m_add_10 m_add_10 m_add_10 m_add_10 m_add_10 m_add_10 m_add_10 

Table 4: Unconstrained Full and Partial Mapping from Design 2 to Design 1 
 
Furthermore, all mapping selections are purely arbitrary, including the selections for the adders. 
The reasoning is as follows: the tool is given almost complete freedom to optimize and should 
not be limited to specific mapping choices. It is also unreasonable to do an exhaustive 
compilation of all the different mapping possibilities. Thus, the mappings are chosen at random. 
The selection of which multiplier to not map is also chosen at random for similar reasoning. 
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The following table summarizes the results of the different mappings. As noted, the full mapping 
along with the upper partial mappings failed. This means that Xilinx® was unable to fit Design 2 
using the groundwork laid out by Design 1. However, once enough multipliers were removed, 
the design was able to run successfully. 
 

Mapping # Frames 
[Frames] 

# Bytes 
[Bytes] 

Time (Actual) [ns] 

8 Mapped Multipliers Design Failed Design Failed Design Failed

7 Mapped Multipliers Design Failed Design Failed Design Failed

6 Mapped Multipliers Design Failed Design Failed Design Failed

5 Mapped Multipliers 3,203 610,570 14.000 (13.965) 

4 Mapped Multipliers 3,144 567,734 14.000 (13.277) 

3 Mapped Multipliers 3,510 610,702 14.00o (13.667) 

2 Mapped Multipliers 3,675 556,494 14.000 (13.840) 

1 Mapped Multiplier 3,973 667,886 14.000 (13.844) 

0 Mapped Multipliers 3,969 671,222 14.000 (13.903) 

Table 5: Experimental Data for Full and Partial Mapping 
 
The timing constraint given to this set is not the tightest bound of 12 ns but slightly loosened to 
that of 14 ns. If too tight of a timing constraint is imposed, the tool may not find a working 
design. Thus, the timing is relaxed enough such that the tool has some leeway but not enough 
such that performance is greatly compromised. 
 
The graph below visually displays the number of frames needed per each mapping. Although 
that the later points do not exist, a mathematical inference can still be made. The trend shows a 
negative linear relationship between the number of mapped multipliers and the number of 
frames. The worst result is when no multipliers are mapped back, taking up around 4,000 
frames; the best result is when all eight multipliers are mapped back, using an estimated 2,600 
frames (in theory). However, based on the result given in Table 5, it is clearly not possible using 
unconstrained mapping. 
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Figure 16: Number of Frames Needed vs. Number of Mapped Multipliers for Unconstrained Mapping 
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The relationships pertaining to the number bytes needed, however, is not as clear cut as it is for 
the number of frames. The data points are scattered about with no clear relationship between 
the number of mapped multipliers and the number of bytes needed.  
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Figure 17: Number of Bytes Needed vs. Number of Mapped Multipliers for Unconstrained Mapping 
There is a negative linear relationship between the number of bits and the number of mapped 
multipliers but the correlation coefficient is low, around 60%. Although it is not clear as to how 
the mapping specifically affects the number of bytes, it is clear that the more multipliers mapped 
back, the greater the amount of bit savings. 
 
6.4. Constrained Mapping 
With unconstrained mapping, the design or task is flattened – the hierarchy of each individual 
component is lost. However, with constrained mapping, not only is the overall hierarchy 
preserved but also each component has a specific location on the FPGA board. This strategy of 
constrained mapping comes with both a major pro and con. The advantage is that the designer 
now has more control over module placement. This leads to an increase in predictability – the 
variations in results can be mapped back to the modifications of the design alterations. The 
disadvantage is board usage, as shown in Figure 18. Pictured above is the same design except the 
left is unconstrained while the right had placement constraints. Note that this design, when 
constrained, takes up more room than the unconstrained version. Note that the top multiplier 
(turquoise) in the constrained version cannot fit in the bottom half if kept in tact but can fit if 
separated. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Unconstrained Constrained 
Figure 18: Two Different Implementation of Design 2 
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The other major concern lies within the physical location of each logic component. The 
placements of each module does affect whether the mapping’s success. Take the following 
example of two different module arrangements of Design 2. The placement of the left picture 
yielded a successful test run while the one on the right did not. As with any other arrangement, 
each module must have enough resources both for itself and for its connections to other 
modules. The failure of the design could be due to lack of available resources – it is possible that 
the modules that were connected in the dfg could not reach one another due to distance or 
routing congestion. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Successful Unsuccessful

Figure 19: Two Different Placements of Design 2  
The facts that each module has a strictly set location and that the logic of the components is 
non-sharable leads to a less efficient use of both board space and resource. However, by relaxing 
area minimization requirements, the design is able to run, even with a complete full mapping 
from Design 2 to Design 1. The table below shows the different full mappings. Note that every 
single trial succeeded due to the use of proper placement and area constraints. The unmapped 
(but still constrained) multiplier in Design 2 is shown in red. 
 

Design 2 Mapping 1 Mapping 2 Mapping 3 Mapping 4 Mapping 5 Mapping 6 Mapping 7 Mapping 8 

mul4100 mult_16 _16 mult_15 mult_15 mult_24 mult_24 mult_18 mult_18 mult_16 mult_16 mult_17 mult_17 mult_21 mult_21 mul4100 mul4100 

mul4102 mult_15 mult_16 mult_23 mult_23 mult_24 mul4102 mult_15 mult_18 

mul4104 mult_21 mult_17 mult_22 mult_24 mult_18 mult_21 mul4104 mult_15 

mul4107 mul4107 mult_18 mult_21 mult_15 mul4107 mult_24 mult_23 mult_17 

add_sub4114 add_10 add_9 add_26 add_9 add_12 add_11 add_10 add_13 

mul4140 mult_22 mult_21 mult_18 mul4140 mult_22 mult_15 mult_16 mult_21 

add4141 add_20 add_10 add_25 add_11 add_25 add_20 add_13 add_14 

mul4172 mult_17 mult_22 mult_17 mult_21 mult_23 mult_22 mult_24 mult_16 

add4173 add_19 add_11 add_20 add_26 add_13 add_12 add_25 add_20 

mul4184 mult_23 mult_23 mult_16 mult_17 mult_21 mult_16 mult_18 mult_24 

add_sub4185 add_25 add_12 add_19 add_20 add_10 add_14 add_9 add_12 

mul4205 mult_18 mult_24 mult_15 mult_16 mult_17 mult_18 mult_22 mult_23 

add_sub4206 add_11 add_13 add_14 add_12 add_9 add_13 add_20 add_10 

mul4216 mult_24 mul4216 mul4216 mult_22 mult_15 mult_23 mult_17 mult_22 

add4217 add_26 add_14 add_13 add_25 add_14 add_10 add_12 add_9 

Table 6: Different Constrained Full Mappings of Design 2 onto Design 1 
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6.4.1. Full Mapping without Wrappers 
Using the full mappings given, the table below lists the results of each trial. Each mapping uses 
the successful arrangement as presented in Figure 19. Note that for these particular set of 
experiments, the modules do not have any wrappers around them. There are two reasons for 
doing so, the first being that if the entire module is mapped, then there should not be any 
difference in the modules from one design to the other. The second reason is that in the case 
that there is a difference, these numbers will be used as a baseline for comparison purposes. 
 

Mapping Without Wrappers # Frames [Frames] # Bytes [Bytes] Time (Actual) [ns] 

Design 2 (Unconstrained) 5,404 839,408 14.000 (14.000) 

Mapping 1 3,250 598,848 14.000 (13.900) 

Mapping 2 3,357 609,368 14.ooo (13.861) 

Mapping 3 3,205 594,516 14.000 (13.917) 

Mapping 4 3,269 594,244 14.000 (13.959) 

Mapping 5 3,296 606,724 14.00o (13.936) 

Mapping 6 3,253 597,752 14.000 (13.984) 

Mapping 7 3,283 607,348 14.000 (13.965) 

Mapping 8 3,284 594,749 14.000 (13.875) 

Table 7: Experimental Data for Constrained Full Mapping 
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The timing constraint for these trials, like the unconstrained case, is relaxed slightly to give the 
tool more leeway when performing optimization algorithms. From the results, it is likely that the 
recorded times are not optimal, as they do not hit the constraint dead on, but they are close. To 
see the amount of savings earned by the use of full mapping, the first trial is the second design 
implemented with no constraints – the tool has every available freedom to perform its own 
optimization techniques. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 20: Number of Frames Needed vs. Various Constrained Mappings for Constrained Full Mapping 
 
According to the above graph, the unconstrained version needs slightly less than 5,500 frames 
to reconfigure. However, compared to any other mapping arrangement, the number of frames 
drops roughly by 2,000. This drastic reduction in frames then reaffirms the importance of 
mapping and proper placement when moving from one design to another. Note, however, that 
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the mapping choices for the multipliers do not significantly affect the savings, as the results were 
relatively constant. 
 
The graph below displays the actual number (red) and the estimated number (blue) of bytes 
needed. There is a substantial difference between the two, implying that there is a large 
overhead involved when doing partial reconfiguration. However, as the difference between each 
individual point is relatively constant throughout each of the different mappings, the 
relationship between frames and bytes can be easily modeled by a mathematical equation.  
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Figure 21: Number of Bytes Needed vs. Various Constrained Mappings for Constrained Full Mapping 
 
6.4.2. Full Mapping with Wrappers 
This section uses the exact same placements as the previous section except that both input and 
output wrappers are included for each multiplier mapped. The purpose of the wrappers is to 
further control the multipliers when switching from one design to the next. They are employed 
in order to limit the routing difference caused by the changing positions of the inputs and 
outputs. The wrappers are placed such that all I/O pins of the modules were facing toward the 
center of the board. Note that this configuration contradicts the previous statement made about 
the optimal arrangement of wrappers for multipliers that have a frame height of 1. The 
reasoning behind this is that all the wiring will meet at one general location and only that 
location will need to be reconfigured. The table below lists the wrapper results. 
 

Mapping With Wrappers # Frames [Frames] # Bytes [Bytes] Time (Actual) [ns] 

Design 2 (Unconstrained) 5,130 760,793 14.000 (13.930) 

Mapping 1 1,955 380,565 14.000 (13.095) 

Mapping 2 1,983 379,417 14.ooo (13.580) 

Mapping 3 1,920 365,837 14.000 (13.753) 

Mapping 4 1,972 386,277 14.000 (13.559) 

Mapping 5 1,965 375,981 14.00o (13.525) 

Mapping 6 1,971 377,725 14.000 (13.095) 

Mapping 7 1,977 383,849 14.000 (13.095) 

Mapping 8 1,992 385,594 14.000 (13.095) 

Table 8: Experimental Data for Full Mapping plus Wrappers  
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The unconstrained value, having a base value of around 5,000 frames, is significantly higher 
than any other mapping arrangement. When using wrappers, the number of frames needed for 
reconfiguration dropped more significantly than before. This further reinforces the effectiveness 
of the wrapper – they give the design more stability when switching from one task configuration 
to another.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 22: Number of Frames Needed vs. Various Mappings for Full Mapping with Wrappers 
 
Recall that when wrappers were not used, it took roughly 3,500 frames to reconfigure. Note that 
each data point settles around 2,000 frames. This further reduction of 1,500 frames shows that 
to have a great result, the dominant modules need wrappers to limit the routing change. From 
the original 5,500 frames, this model of using area constraints with wrappers has a savings of 
roughly 3,500 frames, which is a reduction of over 50%. 
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Figure 23: Number of Bytes Needed vs. Various Mappings for Full Mapping plus Wrappers 
 
The number of bytes needed has also been reduced by a sizeable amount, going from around 
60,000 bytes to 40,000 bytes, a drop of roughly a third of the total amount. Note that the 
overhead amount is also lessened. As there are fewer frames to reconfigure, the need to store 
any extra addresses is not as pressing as before. 
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6.5. Reverse Mapping 
As demonstrated in the previous sections, not only is the placement of the modules important 
but also the interface needs to be fixed along with the module itself. The final set of experiments 
tests if there is a preference between mapping Design 2 onto Design 1 or vice versa. The results 
are based on the methodology described in the previous sections. Recall that Design 1 has one 
fewer multiplier than Design 2, so for this set of mappings, all multipliers from Design 1 will be 
mapped back to that of Design 2’s with one random multiplier omitted.  
 

Design 1 Mapping 1 Mapping 2 Mapping 3 Mapping 4 Mapping 5 Mapping 6 Mapping 7 Mapping 8 

add_9 add_9 add_sub4114 add_sub4185 add4173 add_sub4114 add4141 add_9 add_9 

add_10 add_sub4114 add_10 add4141 add_10 add_sub4206 add_10 add4173 add_10 

add_11 add_11 add_sub4185 add_sub4206 add4217 add_11 add_sub4185 add4217 add4173 

add_12 add4141 add_12 add_12 add_sub4114 add_12 add_12 add_12 add_sub4206 

add_13 add_sub4206 add4217 add_sub4114 add_13 add_13 add_13 add_sub4114 add4141 

add_14 add_14 add4141 add_14 add_14 add_sub4185 add4173 add_sub4206 add_14 

mult_15 mul4100 mul4216 mul4102 mul4104 mul4140 mul4100 mul4172 mul4205 

mult_16 mul4216 mul4107 mul4107 mul4102 mul4100 mul4205 mul4140 mul4216 

mult_17 mul4104 mul4184 mul4140 mul4107 mul4102 mul4216 mul4104 mul4172 

mult_18 mul4205 mul4100 mul4184 mul4100 mul4104 mul4102 mul4100 mul4107 

add_19 add4173 add_19 add4173 add_sub4206 add4141 add_19 add_sub4185 add_19 

add_20 add_20 add_sub4206 add_20 add_20 add4173 add4217 add_20 add4217 

mult_21 mul4172 mul4104 mul4104 mul4140 mul4205 mul4172 mul4102 mul4184 

mult_22 mul4107 mul4102 mul4216 mul4216 mul4216 mul4107 mul4184 mul4140 

mult_23 mul4140 mul4205 mul4172 mul4205 mul4184 mul4140 mul4216 mul4102 

mult_24 mul4184 mul4172 mul4205 mul4184 mul4172 mul4104 mul4107 mul4100 

add_25 add_sub4185 add_25 add4217 add_sub4185 add_25 add_sub4206 add4141 add_sub4114 

add_26 add4217 add4173 add_26 add4141 add4217 add_sub4114 add_26 add_sub4185 

Table 9: Different Mappings from Design 1 onto Design 2 
 
The results given below are done using implementations using area constraints with wrappers. 
Note the actual times relative to the timing constraint is much looser than before, implying that 
there is room for optimization.  
 

Reverse Mapping # Frames [Frames] # Bytes [Bytes] Time (Actual) [ns] 

Design 1 (Unconstrained) 4,930 660,852 14.000 (12.811) 

Mapping 1 1,928 327,226 14.000 (13.468) 

Mapping 2 1,949 327,118 14.000 (13.468) 

Mapping 3 1,938 339,462 14.000 (13.468) 

Mapping 4 1,773 303,246 14.000 (13.468) 

Mapping 5 1,903 317,534 14.000 (13.468) 

Mapping 6 1,962 335,466 14.000 (13.468) 

Mapping 7 1,791 301,578 14.000 (13.175) 

Mapping 8 1,797 323,479 14.000 (13.468) 

Table 10: Experimental Data for Reverse Mapping 
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When the design mapping is reversed, the total number of frames needed falls around 5,000. 
However, when constrained and using wrappers, Design 1 only needs around 2,000 frames to 
reconfigure. This drastic drop in frames is similar to the results obtained during regular 
mapping. However, there is more variation between the different mappings. As there is a 
multiplier missing from the first design to the second, some of the mapping arrangements make 
better, more efficient use of the board than others. As these mappings use up less real estate, 
they require fewer frames (and thus fewer bytes) to reconfigure. 
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Figure 24: Number of Frames Needed vs. Various Mappings for Reverse Mapping 
 
In Figure 25, note the difference between the estimated number of bytes (blue) and the actual 
number of bytes (red). Compared to the normal mapping, the overhead needed for this design is 
significantly smaller. Note that the difference is minute and that the overhead needed is 
substantially less than the overhead needed for the previous design. This significant difference 
in results implies that the order in which the tasks are reconfigured and mapped plays an 
important role in optimization. 
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Figure 25: Number of Bytes Needed vs. Various Mappings for Reverse Mapping 
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7. Future Work 
The research reported in this paper has dealt with some of the fundamental issues that are in 
involved in the minimization of bit usage during partial reconfiguration. Using this as the base 
knowledge, there is a plethora of different venues to explore. Two of these topics, placement 
logistics and systematic layout design, are discussed in greater detail below. 
 
The first possible extension lies in the logistics of module placement. As noted earlier in this 
paper, the placement of the modules within the FPGA board plays a fundamental role in 
determining the successful implementation of a design. However, the exact reasoning as to why 
one placement arrangement works and another arrangement fail is still unknown. A variety of 
reasons, including wire congestion, I/O problems, and module locations, attributes to a higher 
probability of failure but which setback is the most deadly? Not only do the causes of failure 
need to be known but also the severity. 
 
Another option is to come up with an algorithm to systematically determine the optimum floor 
plan of each incoming task if given a sequence of dataflow graphs. The algorithm will start by 
taking each dfg and finding module arrangements (each related to each other) such that bit 
reconfiguration is minimized. Building upon the first topic, not only does each arrangement 
yield the smallest change bit-wise but the design must also run given the previous task’s layout. 
 
 
8. Conclusion 
The introduction of partial reconfiguration has immensely increased both the flexibility and 
versatility of FPGAs. Now with the ability to dynamically change its course and to program on a 
new task, FPGAs can now accommodate even the most complex schedules. To understand and 
figure out the benefits and uses of partial reconfiguration then is a matter of great importance.  
 
The optimization of bit minimization must be taken in steps, as the behavior of each individual 
component must be understood before the applying it to a larger system. This paper has 
demonstrated that the different constraints and considerations all interrelate to one another. 
Floor planning, for example, not only affects the minimization of real estate but also whether or 
not the design is executable. Although listed above are only two future work topics, there is no 
limit of potentially interesting problems that relate to FPGA partial reconfiguration. 
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