

Summary and Analysis of Multiplier-Adders

Jin Hu

July 20, 2005

Introduction
A common component used on FPGA circuit boards is the multiplier-adder or the multiply-accumulator, more
commonly known as the MAC. This merged module consists of two basic components: a multiplier whose
output is then fed into one of the input ports of the adder or accumulator. These two single modules also
have the same bit width; that is, a 16-bit multiplier feeds into a 16-bit adder to make a 16-bit MAC.

To implement a MAC, there are a few important aspects of performance and resource usage to consider. In
particular, the following three are considered: area (in terms of slices), the number of frames needed during
reconfiguration, and timing (clock period). In the following, the 8-bit, 16-bit, and the 32-bit MACs are
analyzed with respect to the previously noted constraints. The discussion of the results will be in part with
respect to the Xilinx® software package used and how Xilinx® performs when given different types of area
constraints, including an unconstrained case.

Constraints and Considerations
To further clarify the terminology and the different constraints put forth on the three merged modules, the
following explains in further detail what each constraint means and why it is important to performance.

Area
The amount of real estate needed on a board is perhaps the easiest to visualize. The physical size of the
module must be small enough to fit onto a given FPGA board. As one module is typically not the only
component used, the amount of room needs to be minimized. Note that this area refers to the implemented
version and not only the physical composition of the MAC. A given MAC needs a number of slices on the
board purely for logic – the variation occurs during the actual placing and routing of the module. The area is
measured in terms of slices or configurable logic blocks [CLBs] where 1 CLB = 2 slices. Please note that all
the areas specified are the constraints imposed. The actual area is slightly greater due to the routing of the
wires during implementation.

Frames
During partial reconfiguration, the number of frames directly correlates to the number of bits that must be
reprogrammed. Thus, the greater number of frames implies the more bits (and subsequently more time)
needed to complete reconfiguration.

bits 1280
byte 1
bits 8

 word1
bytes 4 words40 Frame 1 =××=A note of clarification:

As mentioned above, area is measured in slices or CLBs. For the case of the Virtex-4™ FPGA boards, each
frame spans a height of 16 CLBs (or 32 slices). As a rule of thumb, 1 CLB width-wise spans approximately
22-23 frames. If one bit must be reprogrammed in a frame, then the entire frame must be reprogrammed.
Thus, it is advantageous to make area constraints in terms of the frame height (or every 16 CLBs). For
example, Module A spans 2x8 CLBs and Module B spans 1x16 CLBs. Both modules have the same area (16
CLBs) but Module B needs half as many frames (22-23) as Module A (44-46).

To minimize area and frames, all of the area constraints are made in the following manner: the height of the
area is determined first by the frame height and then the width is minimized afterwards.

Timing
All modules need a certain amount of time to perform a given duty. Specifically for the MACs, the dominating
module is the multiplier, as it takes substantially more time than the adder. The optimal implementation of
MAC implies that the amount of the time the complete module uses should be as small as possible. When
using Xilinx, a tight timing constraint must be specified. Xilinx only checks if it meets the given time
constraint and will not optimize further if the current timing constraint is met. For the MACs, the timings are
constrained at the nanoseconds [ns] scale.

8-Bit Multiplier-Adder
In regards to bit width and size, the 8-bit MAC is the smallest component of the three MAC modules. The
three different constraints mentioned above are explained in further detail below. The discussion is based on
the data compiled in Table 1.

8-Bit Multiplier-Adder

Area? Time (Actual) [ns] x Length
[slices]

y Length
[slices]

Total Area
[slices]

Frames Needed
[frames]

Bit File
[bytes]

no 5.5 (5.486) 10 8 80 85 15,946

yes 5.5 (5.486) 2 30 60 36 7,454

Table 1: 8-bit MAC data

Area and Frames
According to the synthesis and implementation report as given by Xilinx®, an 8-bit multiplier-adder needs a
constant 50 slices of real estate on a Virtex-4™ board. Table 1 shows 2 trials – one without an specified area
constraint and one with. The following graphs show the difference between an unconstrained module and a
constrained module when implemented on Xilinx®. As noted, even though both implementations were given
the same timing constraint, there is a significant difference between the unconstrained and the constrained
modules in terms of area and frames needed. Note that the unconstrained module is shown as the 0th Frame
Height to show comparison.

Frames Needed vs. Frame Height

85

36
30

40

50

60

70

80

90

0 1
Frames Tall

Fr

am
es

2

 Figure 2: Graph of Frames Needed vs. Frame Heigh

f
 t

or 8-Bit MAC

Figure 1: Graph of Area Occupied vs. Frame Heigh
for 8-Bit MAC

t

Area Occupied vs. Frame Height

80

60

50
55
60
65

70
75
80
85

0 1 2

Frames Tall

A
re

a
[s

lic
es

^2
]

From Figure 1, the unconstrained module needs approximately 80 slices to fit on the board. However, with
an area constraint of 60 slices (1x15 CLBs), the area needed is lessened by a significant amount. The
unconstrained 80 slices used relative to only 50 slices of logic needed implies that the placement of the logic
slices is sparse and that wires spread across more board space. However, when constrained to only 60
slices, the module is more densely packed and uses less room.

From Figure 2, the unconstrained module, as it spans many more columns than the constrained module,
needs many more frames during reconfiguration than the constrained module. Thus, it is advantageous to
minimize the number of columns needed. By doing this with the constrained module, the number of frames
needed during reconfiguration is drastically cut down.

A note of observation: The number of frames reported for the constrained module (1x15 CLBs) is 36 frames.
This may seem like a discrepancy with the previously stated information that 1 CLB spans approximately 22-
23 frames. This is due to the routing of wires when Xilinx® implements the adder. Within the 1x15 area are
all the logic slices, but some of the wires cannot fit within this space. Thus, the wires extend out into a
neighboring CLB, adding on more frames.

Timing
In general, the 8-bit MAC can operate at approximately 5.5 nanoseconds. As noted from Table 1, the actual
running time for each synthesis is consistently close to 5.5 ns.

Bit File
The data given in Table 1 specifies the size of the .bit file needed for reconfiguration. This data is gathered
from the program bitgen which is included in the Xilinx® software package. As mentioned earlier, the
number of frames directly correlates to the number of bits needed. However, the frames converted into bits
are not the only bits needed for partial reconfiguration. This does not include the overhead needed, namely
the addresses of the memory locations of where the bits need to go. Thus, it is also important to consider
the amount of overhead needed based on the number of frames. The overhead needed for reconfiguration
will be discussed further in detail at a later section.

16-Bit Multiplier-Adder
The next level of the three modules, the 16-Bit MAC needs more room than the 8-bit model. As before, the
three constraints are discussed in detail with regards to the 16-bit multiplier-adder. The discussion is based
on the data gathered in Table 2.

Table 2: 16-Bit MAC data

16-Bit Multiplier-Adder

Area? Time (Actual) [ns] x Length
[slices]

y Length
[slices]

Total Area
[slices]

Frames Needed
[frames]

Bit File
[bytes]

no 8 (7.991) 20 12 240 228 41,551

yes 8 (7.996) 8 26 208 104 18,459

yes 8 (7.981) 4 52 208 124 22,511

yes 8 (8.545) 2 102 204 157 32,339

Area and Frames
The area needed for the 16-bit multiplier-adder, as given by the synthesis report, is a constant 169 slices.
Table 2 shows syntheses of the same module implemented under different area constraints. The first column
specifies the unconstrained model and the following rows go by frame height. The graphs below show the
relationships between the frame height and area and number of frames needed. Similarly to Table 1, the
unconstrained model is denoted as the 0th frame height as comparison.

Frames Needed vs. Frame Height

228

104 124

157

100

125

150

175

200

225

250

0 1 2 3 4
Frames Tall

Fr

am
es

Figure 4: Graph of Frames Needed vs. Frame Heigh
for 16-Bit MAC

Figure 3: Graph of Area Occupied vs. Frame Heigh
for 16-Bit MAC

Area Occupied vs. Frame Height

204

240

208208

200

210

220

230

240

250

0 1 2 3 4

Frames Tall

Ar
ea

 [s
lic

es
^2

]

t t

From Figure 3, the constrained models (frame heights of 1, 2, 3) all have approximately the same area.
However, when looking at the unconstrained model, there is significantly more area used. As the number of
logic slices needed is only 169, using 240 implies the routing is not optimally done. Notice that the
constrained models can achieve consistent area regardless of frame height. This then means that for this
particular module, real estate is can be conserved regardless of the shape of the constraint. In accordance
with Table 2, the timing constraints for each trial are consistent.

From Figure 4, the unconstrained model uses the most number of frames. Regarding the data from Table 2,
it is evident that the number of columns spanned is much greater than any of the constrained models. Thus,
when unconstrained, Xilinx® does not give an optimal implementation with regards to both area and the
number of frames. Furthermore, after the initial unconstrained model, the graph shows a positive
relationship between frame height and the number of frames needed for reconfiguration. This graph
demonstrates that even though the areas remain approximately the same (see the corresponding points on
Figure 3), the number of frames needed do not. From the graph, the minimum occurs when the constraint
shape has a frame height of 1.

Timing
The 16-bit multiplier-adder runs typically at the 8 ns level. The time constraints imposed on the 4 different
trials remain constant throughout. Notice that in the last row, the timing constraint given was 8 ns, but the
actual time taken is approximately half a nanosecond greater. This is due to the shape of the area
constraint. At a frame height of 3, the module width is very thin and narrow – the width of 1 CLB. For
smaller bit-widths, this does not pose a problem but for larger modules, it sometimes is not feasible to meet
the timing constraint based on the area constraint. Thus, as a first priority, Xilinx® first tries to meet the area
constraint and then looks at the timing constraint.

Bit File
As in Table 1, Table 2 also gives the corresponding .bit file sizes to each module synthesis. This data is used
at a later section where the .bit files are discussed more in detail.

32-Bit Multiplier-Adder
The largest and most complex of the three MACs, the 32-bit multiplier-adder uses up the most resources
than any of the previous models. The different constraints are discussed in detail in this section with regards
to the 32-bit MAC. All discussion relates to the data presented in Table 3.

Table 3: 32-Bit MAC Data

32-Bit Multiplier-Adder

Area? Time (Actual) [ns] x Length
[slices]

y Length
[slices]

Total Area
[slices]

Frames Needed
[frames]

Bit File
[bytes]

no 12 (11.996) 36 22 792 430 74,824

yes 12 (11.984) 32 26 832 386 67,392

yes 12 (11.907) 12 62 744 337 60,068

yes 12 (11.984) 8 92 736 326 56,732

yes 12 (11.991) 6 124 744 368 67,224

Area and Frames
The logic slices needed by the 32-bit multiplier-adder comes to a total of 605 slices. Thus, the routing for
this module will take more room than the previously discussed ones. In this case, due to the size of the
module, it is possible to span up to 4 frame heights. It appears that it is possible to constrain the area into
even more narrow strips but due to the limitation of the board used, the maximum frame height achievable
is 4. As before, the unconstrained trial is denoted as the 0th frame height in the following graphs.

Area Occupied vs. Frame Height

792

832

744 744
736

720

740

760

780

800

820

840

0 1 2 3 4

Frames Tall

Ar
ea

 [s
lic

es
^2

]

5

Frames Needed vs. Frame Height

368

326

337

386

430

300

325

350

375

400

425

450

0 1 2 3 4 5
Frames Tall

Fr

am
es

Figure 5: Graph of Area Occupied vs. Frame Heigh
for 32-Bit MAC

t Figure 6: Graph of Frames Needed vs. Frame Heigh
for 32-Bit MAC

 t

From Figure 5, the unconstrained model does not show the same trend as the previous two models. That is,
for this module, when unconstrained, the area size that Xilinx® has chosen is not very much different than
the constrained models. Notice that unconstrained model is actually better than when the module is
constrained to be approximately 1 frame tall. A noted observation about Xilinx®: when unconstrained, the
module is placed at the bottom left hand corner and branches out from there. Thus, due to the amount of
room needed for this particular module, Xilinx® produced a decent area size. For the rest of the frame
heights starting at 2, the area remains approximately equal. This shows that the 32-bit MAC is easier to
implement at these specific frame heights.

From Figure 6, the unconstrained model still uses the most number of frames, even though it takes up less
area than a constrained model having a frame height of 1. As the frame height increases, the graph shows a
parabolic behavior – a minimum appears where the constrained shape takes on a frame height of 3. It is
also worthwhile, however, to note the actual number of frames needed. For the last few entries, the number
of frames has a small amount of variation. Between the last three points, there is only a difference of 42
frames, around 10% of the total number of frames. This then implies that even though the best choice is
when the height equals 3, a reasonable implementation can occur with any frame height greater than 1.

Timing
The 32-bit multiplier-adder can run consistently at around 12 ns. Note that for these specific frame heights,
each one did not have problems passing the given time constraint. However, it is very likely that for area
constraints that are taller and narrower to not meet timing constraints, similar to what occurred for the 16-
bit multiplier-adder.

Bit File
As in Table 1 and Table 2, Table 3 also gives the corresponding .bit file sizes to each module synthesis for
the 32-bit MACs. This data is used at a later section where the .bit files and the necessary overhead are
discussed more in detail.

Timing Effects on Area and Frames
The designs of the implementations of MACs are dependant upon the three constraints mentioned earlier:
timing, area, and the number of frames. As discussed, the number of frames for a given area can vary
greatly and that the area should be minimized with respect to frame height. What may not have been made
clear is how the timing constraint affects the implementation of the module and thereby the total area and
frames needed. The timing constraint is used primarily for routing purposes – the lower the constraints, the
more rigorous Xilinx® must work in order to meet the constraint. Given different timing constraints, Xilinx®
will generate different routing schemes, thereby producing different area and number of frames needed.
However, the area and the number of frames given for different timing constraints are insignificant in
comparison to the “base numbers”. To change the timing constraint is similar to moving a module to a
different area of the board – the difference is very little. Thus the timing constraint does not affect the other
two parameters.

Bit Files and Overhead
As mentioned in a few of the previous sections, the .bit files contain how many bits it take to configure a
given module plus the addresses of where the bits need to go. The addresses are considered the overhead
required in the process of partial reconfiguration and must be taken into account. The overhead can be
determined from the number of frames needed and the .bit file size per module. The graph below show the
relationship between the number of frames and the number of bits (measured in bytes) in the .bit files. All
data used is gathered from all of the modules mentioned above in addition to other experimental data from
other modules.

Figure 7: Graph of Number of Bytes in .bit File vs. Number of Frames

Bytes Needed vs. # Frames

y = 173.59x + 1769.7
R2 = 0.9963

0

20,000

40,000

60,000

80,000

100,000

0 100 200 300 400 500 600

Frames

By

te
s

Ne
ed

ed

From Figure 7, the relationship is linear with a very strong correlation coefficient. The given linear regression
equation describe that for every frame (denoted by x), it needs approximately 174 bytes plus a constant
value. As mentioned earlier, 1 frame = 160 bytes. Subtracting this from 174, there is approximately 14 bytes
of overhead per any given frame.

