
Appears in Supercomputing ´92, November 1992, Minneapolis, MN

Optimal Tracing and Replay for Debugging Message-Passing
Parallel Programs

Robert H. B. Netzer Barton P. Miller
Dept. of Computer Science Computer Sciences Dept.

Brown University University of Wisconsin−Madison
Box 1910 1210 W. Dayton St.

Providence, RI 02912 Madison, WI 53706
rn@cs.brown.edu bart@cs.wisc.edu

Abstract

A common debugging strategy involves re-
executing a program (on a given input) over and over,
each time gaining more information about bugs. Such
techniques can fail on message-passing parallel programs.
Because of variations in message latencies and process
scheduling, different runs on the given input may produce
different results. This non-repeatability is a serious
debugging problem, since an execution cannot always be
reproduced to track down bugs. This paper presents a
technique for tracing and replaying message-passing pro-
grams for debugging. Our technique is optimal in the
common case and has good performance in the worst
case. By making run-time tracing decisions, we trace
only a fraction of the total number of messages, gaining
two orders of magnitude reduction over traditional tech-
niques which trace every message. Experiments indicate
that only 1% of the messages often need be traced. These
traces are sufficient to provide replay, allowing an execu-
tion to be reproduced any number of times for debugging.
Our work is novel in that we use run-time decisions to
detect and trace only those messages that introduce non-
determinacy. With our strategy, large reductions in trace
size allow long-running programs to be replayed that
were previously unmanageable. In addition, the reduced
tracing requirements alleviate tracing bottlenecks, allow-
ing executions to be debugged with substantially lower
execution-time overhead.

1. Introduction

Parallel programs can be nondeterministic. When
processes communicate by passing messages, variations
in scheduling and message latencies can cause two execu-
tions of the same program (on the same input) to produce
different results. Such nondeterminacy may be intended,
but it can cause serious problems while debugging: subse-
quent executions of the program may not reproduce the
���

This work was supported in part by National Science Foundation
grants CCR-8815928 and CCR-9100968, Office of Naval Research grant
N00014-89-J-1222, and a grant from Sequent Computer Systems Inc.

original bug. This non-repeatability makes it difficult to
use traditional sequential debugging techniques that
require repeated execution. Therefore, a mechanism for
tracing and then replaying a program execution is an
essential part of parallel program debugging. A critical
cost in such a mechanism is the cost of tracing. In this
paper we present a trace and replay mechanism for
message-passing parallel programs that is optimal in the
common case and has good performance in the worst
case. We significantly reduce the number of messages
that need be traced, improving by up to two orders of
magnitude earlier techniques that trace every message.
With such a reduction, long-running programs can now
be replayed that could not have been previously replayed.
Our tracing works by making decisions at run-time, trac-
ing often the minimal set of messages needed to provide
replay. Experiments show that only 1% of the messages
usually need be traced.

In a trace and replay scheme, the order in which
messages are delivered (but not their contents) is first
traced during execution. These traces are then used dur-
ing re-execution to force each message to be delivered to
the same operation as during the traced execution. Trac-
ing the original execution is necessary because some mes-
sages may race with others, introducing nondeterminacy
into the execution. Two messages race if they are simul-
taneously in transit and either could arrive first at some
receive operation. If the original order in which racing
messages are delivered is not recorded, their order cannot
always be reproduced during replay. However, by tracing
the original message deliveries and then forcing them to
occur during replay, the computation and all its messages
will be exactly reproduced†. An erroneous execution can
then be repeatedly replayed to analyze the execution more
carefully and gain information about bugs.

Our main result is a tracing strategy using on-the-
fly detection of racing messages that is optimal in most
���

† Interactions with the external environment must also be repro-
duced (such as return values from system calls). However, these interac-
tions must be reproduced to replay sequential programs as well.

cases and effective even in the worst case. Instead of
tracing every message (as earlier schemes propose), our
technique checks each message to determine if it races
with another, and traces only one of the racing messages.
When a message is received, a race check is performed
by analyzing the execution order between the previous
receive operation in the same process and the message
sender. The ordering information necessary for this
check is maintained during execution by appending vec-
tor timestamps onto user messages. This strategy is effec-
tive because the racing messages are exactly those that
introduce nondeterminacy into the execution.

Our work is novel in that only the racing messages
are traced. In contrast, earlier trace and replay schemes
for message-passing programs require tracing every mes-
sage. Replay was first introduced by Curtis and Wittie in
the BugNet system for debugging distributed C pro-
grams[1]. LeBlanc and Mellor-Crummey[4] also
addressed replay but considered both shared-memory and
message-passing parallel programs. They trace only the
order in which messages are delivered (and not their con-
tents). By reproducing only the order of message
deliveries, their contents (and hence the original computa-
tion) will also be reproduced. However, both of these
schemes require emitting some type of trace for every
message. Tracing every message can require huge
amounts of storage for long-running programs, making
them impossible to debug. In addition, as processors
become faster and parallel machines become larger, trac-
ing becomes an increasing bottleneck.

2. Example

To contrast traditional trace and replay schemes
with our tracing strategy, we present an example
message-passing program. This example shows that trac-
ing every message sent during execution is sufficient to
provide replay but is not necessary. Instead, tracing only
the racing messages is sufficient to provide correct replay
of all messages (even those that do not race).

Figure 1a shows a three-process message-passing
program. Processes P 1 and P 3 send Msg1 and Msg2 to
process P 2. Process P 2 issues two Recv operations that
will accept messages from any process. Figure 1b illus-
trates one possible execution of this program in which P 2
first received Msg1 sent by P 1, then received Msg2
from P 3. However, because these two messages race,
they are not guaranteed to be delivered in this order.
Intuitively, two messages race if either could be received
first (due to the unpredictability of schedulers and mes-
sage delays). For example, if Msg1 were delayed
(because of variations in message latencies), Msg2 could
instead be received first by P 2, as shown in Figure 1c.
This nondeterminacy causes a problem when debugging,
since re-executing the program (on the same input) is not
guaranteed to reproduce the original execution.

To replay the execution for debugging, we must
first trace the order in which the messages are delivered,
and then use this trace to force a re-execution to exhibit
the same message deliveries. Earlier trace and replay
schemes propose tracing the order in which all messages
are delivered[1, 4]. For example, they would record that
Msg1 was delivered to the first Recv in P 2 and that
Msg2 was delivered to the second Recv. During replay,
the receive operations are modified to accept only the
appropriate messages. However, in this example, it
suffices to trace only one of the two messages. If only the
delivery of Msg1 to the first Recv in P 2 is recorded,
sufficient information still exists for replay. By forcing
only this message to be delivered to the appropriate
receive (the first Recv in P 2), the other message will
automatically be delivered to the correct operation — it
has no where else to go. One of our results is a proof that
only racing messages need be traced, and we need trace
only one message in each race. Non-racing messages
cannot introduce nondeterminacy and thus their deliveries
need not be enforced during replay.

In Section 3 we formally define these races. In
Section 4 we show how to detect and trace them on-the-
fly and provide replay from the traces. We also prove that
in the common case our tracing strategy is optimal: the
traced messages are often the minimal number whose
order must be reproduced for replay. In Section 5 we
present experimental results indicating that this strategy is
effective in practice, even in the non-optimal case.

3. Formal Characterization of Races

In this section we formally define the notion of a
message that races. In the following sections we show
how to detect racing messages on-the-fly to record infor-
mation sufficient for replay. To formalize the races in a
program execution, we present a model that represents
both the actual behavior exhibited by the execution (such
as its events and message deliveries) and behaviors it
potentially could have exhibited. We then formalize the
notion that a race exists when either of two messages
could have been delivered first to some receive operation.

3.1. Intuitive Example

Intuitively, two messages race if either could have
been accepted first by some receive, due to variations in
messages latencies or process scheduling. To isolate the
effects of these variations, we will examine all possible
ways in which a frontier can be drawn across the execu-
tion. A frontier divides the events into two sets: those
before the frontier and those after. Figure 2a shows an
example frontier just above a, b, and c. We are interested
in all frontiers such that

(1) two (or more) sends are just after the frontier
(events a and c in Figure 2),

2

P1 P2 P3

Recv

Recv

Send
Send

P1 P2 P3

Recv

Recv

Send
Send

Send Msg1 to P2 Send Msg2 to P2Recv X from ANY

Recv Y from ANY

(b) (c)

(a)

P1 P2 P3

Msg1
M

sg
2

M
sg1

Msg2

Figure 1. (a) example message-passing program, and (b),(c) two possible executions
���

(2) a receive that could have accepted either of their
messages is just after the frontier
(event b in Figure 2), and

(3) all receive events before the frontier also have
their senders before the frontier.

All such frontiers identify receive operations (those just
after the frontier) that could have accepted different mes-
sages. We say that messages sent to such receives are
involved in frontier races. As shown in Figure 2b, the
race between the messages below the frontier means that
a different message (from c) could have arrived at b first,
forcing the message from a to be received later.

3.2. Program Execution Model

We next formally characterize the frontier races in
terms of a model. Our model is simply a notation for
representing the execution of a message-passing parallel

program. A program execution is a pair, P = 〈E, HB 〉,
where E is a finite set of events and HB is the
happened-before relation defined over E.

An event represents the execution instance of a set
of consecutively executed statements in some process.
We assume a fixed number of processes, p, exist during
execution, and denote the events in process p by Ep. We
distinguish between synchronization events, which are in-
stances of send or receive operations, and computation
events, which represent the execution of non-
synchronization statements. We model message passing
as occurring over logical channels; each send or receive

event e specifies a set of logical channels over which it
sends or is willing to receive a message. Using logical
channels is very general; any message-passing scheme
(such as ports, mailboxes, or links) can be represented.
We attach the attributes SEND (e) and RECEIVE (e) to
synchronization events to denote these channels.

The happened-before relation, HB , shows how
events potentially affect one another[3], and is defined as
the irreflexive transitive closure of the union of two other

relations: HB = (XO ∪ M)+ . The XO rela-
tion shows the order in which events in the same process
execute. The i th event in any process p (denoted ep,i) al-

ways executes before the i +1st event: ep,i
XO ep,i +1.

The M relation shows the order in which messages are

delivered: a M b means that a sent a message that b re-

ceived (we also write a M b to denote the message a
sent). An event a is said to happen before an event b iff a
could affect b because they belong to the same process or
because a sequence of messages was sent from a (or a fol-
lowing event) to b (or a preceding event).

3.3. Definition of Race

As illustrated above, a frontier race exists when a
receive event b could receive a message from one of
several sends. To formalize these races, we need to focus
on other executions that could have occurred, which we
call feasible program executions. We will characterize
the set of all feasible executions that show all the ways in
which a frontier can be drawn across the execution. We

3

P1 P2 P3 P1 P2 P3

a

b

c

d

a c

b

Frontier

(a) (b)

Figure 2. (a) one possible frontier, (b) the message from c could have been received by b
���

can then define the frontier races in terms of this set.

For each frontier that can be drawn across the exe-
cution, P, we will consider the set of all feasible execu-
tions that exhibit the same events and message deliveries
as P up to that frontier, after which different messages
deliveries may occur. We denote this set by FSAME.

Definition 3.1
FSAME is the set of all program executions,

P′ = 〈E′, HB ′ 〉, such that the following hold.

(1) P ′ represents an execution that the program
could actually perform.
(2) P ′ performs the same events as P to just after
some frontier, defined as follows:

for each process p, the set Ep ′ includes
(a) a prefix of the events in Ep (which
defines the events before the frontier), and
(b) the event in Ep just after this prefix
(which defines the event after the frontier).

(3) P ′ exhibits the same message deliveries as P
before the frontier:

for all a,b ∈ E ′ where a and b are before

the frontier, a M ′ b ⇔ a M b.
�

Figure 2 illustrates an actual program execution (P)
and a feasible program execution (P ′) in FSAME. P ′ (Fig-
ure 2b) exhibits the identical events and message
deliveries as P (Figure 2a) before the frontier, and in-
cludes one event in each process just after the frontier.
Although the messages before the frontier must be sent to
the same events in P ′ as in P, the messages involving
events just after the frontier may have different destina-
tions. This example shows that even though a message

was delivered from a to b in the actual execution (P), a
different execution was possible (P ′) in which a message
was delivered from c to b and the message from a was
delivered to some later event.

Since FSAME characterizes message deliveries other
than those that actually occurred, we can formally define
a frontier race in terms of this set. We will say that two

messages, a M b and c M d, are involved in a fron-
tier race iff a frontier can be drawn in such a way that a,
b, and c are just after the frontier, and b could have re-
ceived the message sent by c. We define a binary relation
(over the messages in P) to represent these races.

Definition 3.2

a M b RacesWith c M d iff a program

execution, P′ = 〈E′, HB ′ 〉, exists in FSAME such

that a,b,c ∈ E ′ and c M ′ b (c ≠ a).
�

4. Message Tracing Using On-the-fly Race Detection

We now present our trace and replay strategy. Our
approach is to locate the frontier races on-the-fly and to
trace only one message in each race, instead of tracing
every message. In this section we first show how the
frontier races can be detected and traced on-the-fly, and
then discuss how to provide replay from the traces. We
also prove that our algorithm is optimal in most cases and
traces only the minimal number of messages required.

4

Receive Msg from Channels:

1: Send = event that sent Msg;
2: PrevRecv = previous event (in the same process) willing to receive from

the channel over which Msg was sent;
3: PrevSend = event that sent message to PrevRecv;

4: if (PrevRecv /
HB Send)

5: trace that a message was delivered from PrevSend to PrevRecv;

(a)

P1 P2 P3

Send

PrevRecv

Recv

PrevSend

P1 P2 P3

Send

PrevRecv

Recv

PrevSend

(b) Frontier race (shaded message traced) (c) No frontier race (no messages traced)

(PrevRecv /
HB Send) (PrevRecv HB Send)

Figure 3. (a) tracing algorithm, (b),(c) example race checks performed at boxed receive
���

4.1. On-the-fly Race Detection and Tracing

We detect frontier races on-the-fly by performing a
race check after each receive. By analyzing the execution
order between the sender and a previous receive in the
same process, we can determine whether the received
message races with another, and trace only a racing mes-
sage. For simplicity, we assume that the receiving ends
of logical channels are associated with a single process;
e.g., messages to ports (but not mailboxes). Two mes-
sages can then race only if they are received by the same
process, simplifying the tracing algorithm. Below we dis-
cuss handling more general (mailbox) communication.

Figure 3a shows our on-the-fly race detection and
tracing algorithm, which is invoked after each receive.
Recall that a race exists when either of two messages
could have arrived first at some receive. After a message
is received, this algorithm determines whether the mes-
sage could have instead been received by a previous
operation in the same process. To identify these situa-
tions, an earlier receive is located (line 2) that accepted a
message from the same channel over which the current
message was sent. Both the earlier message and the
current message are race candidates. As shown in Figure
3b, if PrevRecv did not happen before the sender of the
current message (Send), then a frontier race exists: both
the previous and current messages could have been simul-

taneously in transit and either could have arrived first at
PrevRecv. In this case the algorithm traces the first racing
message. If instead PrevRecv happened before Send (as
shown in Figure 3c), then no race exists: the two mes-
sages could not have been simultaneously in transit, and
the algorithm emits no trace. We prove in Appendix A
(Theorem 1) that this algorithm traces at least one mes-
sage in each frontier race.

The traces only need identify the sending and re-
ceiving events of the racing message. These events can
be identified by maintaining in each process a local
counter (incremented after every synchronization opera-
tion) that is used to assign serial numbers to events[4]. It
suffices to trace the event serial numbers of the sender
and receiver and the process number of the sender. If one
trace file is maintained for each process in the program
execution, the process number of the receiver is implicit
and need not be recorded.

Because we assume that the receiving end of each
logical channel is associated with a single process, to find
races it suffices (in line 2) to locate the previous event in
the same process that could have accepted the incoming
message. In mailbox communication, a mailbox might
have multiple simultaneous owners in different processes.
Two messages (to the same mailbox) can race even if
they are received by different processes. Detecting these

5

races requires locating earlier events in any process that
could have accepted the incoming message sent to the
mailbox. Such events can be located by modifying the
mailbox mechanism to store the last event in each process
that received a message from the mailbox. Line 4 of the
tracing algorithm can be modified to check the execution
of order of each of these events against the sender.

4.2. Replay

Replay can be provided by resolving each frontier
race during re-execution in the same way as during the
original execution. We prove in Appendix A (Theorem
2) that the delivery of only the traced messages need be
specially enforced during replay; untraced messages will
automatically arrive at the correct receive and need no
special treatment. We provide replay by buffering the
racing messages so they can be accepted by receive
operations in the proper order. If necessary, the traced
messages can be forced (at additional cost) to actually ar-
rive in their original order, alleviating the need for buffer-
ing and ensuring that no buffer overflows occur during re-
play.

To effect replay, event serial numbers are assigned
(as in the original execution) by maintaining a local
counter in each process that is incremented after every
synchronization operation. These counters are used to en-
sure that racing messages are accepted by the intended re-
ceive events. To distinguish between different messages,
each send appends its process number and serial number
to its outgoing message. To match racing messages with
the correct receive during replay, receives that were origi-
nally traced are modified to accept only the message
whose serial number appears in the trace. Each trace file
must be sorted (by receiver serial number) before replay,
so that during replay the next receiver serial number in
the trace file can be compared to the serial number of the
next event (about to be performed). These numbers will
match if the next event originally accepted a racing mes-
sage. For these receives, incoming messages with sender
serial numbers that do not match the trace are buffered so
they can be accepted by later receives. Such buffering is
often normally performed by message-passing systems
that accept asynchronous messages. Receives that were
not originally traced are not modified and accept mes-
sages as usual (only one message will ever arrive for each
such receive).

The above replay strategy ensures that each mes-
sage is received by the correct operation, but does not
guarantee that messages arrive at a process in the same
order as during the original execution. Racing messages
can still arrive in any order, and must be buffered so that
they can be received in the correct order. Buffering is
normally not a problem unless buffer space is limited.
Buffer overflows may occur during replay that did not
originally occur. To guarantee that no overflows occur,

we can reproduce the original message arrival order by
passing control messages during replay. When a message

a M b races with a message c M d, a control mes-
sage from a new send (added by the replay system) just

after b to a new receive just before c ensures that c M

d is not sent until a M b has been received. Because
such messages introduce additional orderings that were
not present during the original execution, they can reduce
the amount of parallelism achievable during replay, and
should only be used if buffer overflow is a problem.

4.3. Optimal Message Tracing

We now show that our tracing algorithm is optimal
in most cases. We characterize when the traces are op-
timal and present example executions for which minimal
and non-minimal traces are generated. Even when non-
minimal traces are recorded, they are usually small.

Our tracing algorithm generates minimal traces if
each message is either involved in only one race, or if
messages participate in multiple races and the races are
transitive. Transitive races often occur when receive
operations specify either a single channel or any channel
over which to accept a message, instead of a subset of
channels. We prove in Appendix A (Theorem 4) that our
tracing algorithm is optimal on executions for which the
RacesWith relation is transitive (see Definition 3.2). Fig-
ure 4a illustrates such an execution. Because all three re-
ceive operations could have accepted messages from any

channel, all three messages, a M b, c M d, and e
M d, race with each other. The optimal trace consists

of recording any two of the three messages (such as the
two shaded messages): without tracing these messages,
replay cannot ensure that all three messages are delivered
to the correct event. In this case, our algorithm traces the
first two messages, which is an optimal trace.

Figure 4b shows an execution with non-transitive
races. In this example, the first receive can accept mes-
sages only from processes 1 and 3, the second receive
from processes 3 and 4, and the last receive from process
4. Because the second message could have been accepted
by the first receive, the first two messages race. Similarly,
because the third message could have been accepted by
the second receive, the last two messages race. However,
because the last message could not have been received by
the first receive (it only accepts messages from processes
1 and 3), the first and last messages do not race. The op-
timal trace thus consists of recording only the second
message: if replay ensures that the second message is
delivered to the second receive operation, the other two
messages will automatically arrive at the correct events
(no other receives will accept them). Our tracing algo-
rithm would trace the first two messages, which is not op-
timal.

6

P1 P2 P3 P4

Recv (ANY)

Recv (ANY)

Recv (ANY)

a
b

d

f

c

e

P1 P2 P3 P4

Recv (1,3)

Recv (3,4)

Recv (4)

a
b

c

e
d

f

each message races with all others
(a): Transitive races (b): Non−transitive races

first and second messages race

second and third messages race

first and third message do not race

Figure 4. (a) Transitive races, (b) non-transitive races: shaded messages show the optimal trace
(tracing algorithm would trace the first two messages)

���

5. Implementation and Experimental Results

We now discuss experiences with our trace and re-
play strategy. We first discuss an implementation of our
tracing algorithm based on appending vector timestamps
onto user messages. These timestamps provide informa-

tion about the HB relation needed to perform on-the-fly
race checks. We then discuss experiments performed on
a collection of message-passing programs on a 64-node
Thinking Machines CM-5 and a 32-node Intel iPSC/2 hy-
percube. These experiments show that only 0−19% of the
messages in these programs were traced, and in all but
one case the optimal trace was generated. In addition, the
small traces completely alleviated tracing bottlenecks that
plague traditional schemes which trace every message.
These results suggest that our trace and replay technique
is very effective in practice, producing small traces with
low execution-time overhead, providing a new technique
to debug even long-running programs.

5.1. Implementation

The tracing algorithm presented in Section 4 detects

races by determining the HB relation between the
sender of a message and a previous receive. Our imple-

mentation of this algorithm maintains the HB relation
during execution with a vector timestamp in each process.
A vector timestamp is a vector of length p (the number of
processes) containing event serial numbers[2]. These
timestamps are maintained by appending them onto user
messages and updating them after each receive operation.
The tracing algorithm detects races by comparing times-
tamp values and event serial numbers to determine wheth-
er the previous receive happened before the sender of the
current message.

In our implementation, each process maintains both
a local virtual clock, Clock, and a vector timestamp,
Timestamp. The local clock is used to assign serial
numbers to events: events are numbered sequentially
within a process beginning with the number 1, and the
clock is incremented after each operation. The times-
tamps are maintained so that at any point during execu-
tion, the i th slot of the vector timestamp for process p
(i.e., Timestamp[i]) equals the serial number of the last
event in process i that happened before the most recent
event in process p. By definition, the p th slot equals the
current value of p’s local clock. To maintain these times-
tamps, each process appends the current value of its
timestamp onto the end of each message it sends. Upon
receiving a message, it updates its timestamp by comput-
ing the component-wise maximum with the timestamp ap-
pended to the incoming message.

The race check in line 4 of our tracing algorithm
(Figure 4) is performed easily using the timestamps. The
sender’s timestamp (which is appended to the incoming
message) is compared to the serial number of the previous
receive to determine if the receive happened before the
sender. The value of the p th slot of the sender’s times-
tamp equals the serial number of the most recent event in
process p that happened before the sender. If the serial
number of the previous receive is greater than this value,
then the previous receive did not happen before the
sender, and a frontier race exists.

5.2. Experimental Results

We implemented our tracing algorithm on two
message-passing parallel machines: a 64-node Thinking
Machines CM-5 and a 32-node Intel iPSC/2 hypercube.
On each machine, two instrumented versions of the

7

message-passing library were created. One version uses
the traditional approach of tracing every message sent
during execution, and the other version uses our tracing
algorithm to trace only racing messages. We analyzed a
collection of message-passing programs obtained from
colleagues and measured two quantities. First, the per-
centage of messages that race was recorded. This percen-
tage shows the trace size reduction obtained by our race-
based tracing strategy. Second, the increase in execution
time of both the traditional approach of tracing every
message and our approach of tracing only racing mes-
sages was measured. These overheads show whether the
cost of performing race checks outweighs the time sav-
ings obtained by not tracing non-racing messages. We
found that often only 0−2% of the total messages were
traced, and in cases where the execution-time overhead of
tracing every message is high, race-based tracing is an
order of magnitude faster.

Table 1 shows the results of our experiments on six
programs. det computes the determinant of a matrix, and
was run on a randomly generated 100×100 matrix. line
computes the intersections of a collection of line seg-
ments, and was run on 1000 randomly generated seg-
ments. mesh computes finite differences over a grid to
solve a differential equation, and was run on a 300×300
grid. mult multiplies two matrices, and was run on two
randomly generated 100×100 matrices. sys uses Gaussian
elimination to solve a linear system of equations, and was
run on a system of 300 randomly generated (linearly in-
dependent) equations. tycho is a cache simulator, and
was run on a 10 MByte address trace.

Our first experimental result pertains to trace sizes:
In two programs (det and sys), only 1−2% of the mes-
sages were traced — a two order of magnitude reduction
over tracing every message. In two programs (line, mult),
���
Program Messages Messages % of Opt. Overhead

Sent Traced Trace all racing
msgs msgs���

det‡ 4713 63 (1%) optimal 568% 8%

line‡ 31 0 (0%) optimal 0.3% 8%

mesh‡ 10210 1392 (14%) optimal 28% 14%

mult‡ 1120 0 (0%) optimal 15% 0.1%

sys‡ 9424 332 (2%) optimal 561% 14%

tycho† 1791 412 (19%) within − −
46%

���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

† 64-node Thinking Machines CM-5
‡ 32-node Intel iPSC/2

Table 1. Results of message tracing

none of the messages raced, and no traces at all were gen-
erated. Executions of these programs (on the given input)
are guaranteed to be reproduced automatically; nothing
special need be done during replay. In two programs
(mesh, tycho), 14−19% of the messages were traced.
These cases represent programs that were designed to be
highly internally nondeterministic (although their final
results are deterministic); they use some form of a first-
come first-served worker paradigm. Even in such cases,
the number of racing messages was rather low. In five of
the six programs the optimal trace was generated (be-
cause the races were transitive, as discussed in Section
4.3). In the other program (tycho), the trace size was
within 46% (or less) of optimal†. These results suggest
that our tracing strategy is effective, tracing as few as
0−2% of the messages, and no more than 19% of the mes-
sages even in programs that are highly nondeterministic.
In addition, our tracing algorithm generated optimal
traces for most of the test programs, and even when non-
optimal traces were generated, they were small.

Our second result pertains to the execution-time
overhead incurred by our tracing strategy. To assess this
overhead, we analyzed three versions of each program:
the original (uninstrumented) program, an instrumented
version that traces every message, and an instrumented
version that traces only racing messages. Each version of
every program was executed 10 times and the average ex-
ecution times were computed. The last two columns of
Table 1 show the execution-time overhead incurred by
tracing all messages and tracing only racing messages‡.

Two programs (det and sys) suffered substantial
slowdown (almost 600%) when using the traditional ap-
proach of tracing every message. These programs exhi-
bited a high frequency of message operations. Tracing
this high traffic introduced a bottleneck, since many trace
records needed to be written in a short time. In contrast,
our strategy of tracing only the racing messages reduced
the tracing requirements to the point where the bottleneck
was completely alleviated (resulting in a slowdown of
only 8−14%). In the programs that had no racing mes-
sages (line, mult), the overhead of race-based tracing indi-
���

† We derived this quantity by computing a lower bound on the
optimal trace size. As shown in the proof of Theorem 3 (in Appendix
A), computing an optimal trace is equivalent to computing a minimal
vertex cover of a graph. To determine how the recorded trace size com-
pares to the optimal trace, we used graph matching to estimate the op-
timal size to within a factor of two. For tycho, the recorded trace size
was no more than 46% larger than optimal. Determining whether it was
actually optimal would require computing a minimal vertex cover, which
is an intractable problem in general.

‡ Because our CM-5 had not yet been equipped with I/O proces-
sors, overhead measurements for this machine were not reported. Our
implementation performed trace I/O by sending messages over the diag-
nostic network. The unusually high cost of this I/O makes the overhead
of tracing all messages several orders of magnitude higher than race-
based tracing, making comparisons unrealistic.

8

cates the inherent cost of performing the on-the-fly race
checks. This overhead shows that the cost of maintaining
the vector timestamps and checking for races is low (0.1-
8%). Because line had low message-passing traffic, trac-
ing every message was cheaper than maintaining the
timestamps. In mult, longer messages were passed
between nodes, making the incremental cost of appending
timestamps low. In both programs, tracing every message
did not introduce a bottleneck, and both tracing strategies
had reasonable overheads.

6. Conclusions

In this paper we presented a trace and replay stra-
tegy for message-passing parallel programs that is often
optimal and always effective. The small traces and low
overhead produced by this strategy allow even long-
running programs to be replayed that previously could not
have been replayed in practice. This work provides a new
foundation on which efficient parallel-program debugging
techniques can be built. We achieve these benefits by
making tracing decisions at run-time, instead of tracing
every message (as earlier work proposes). Race checks
are performed after each receive operation to locate and
trace exactly those messages that introduce nondetermina-
cy. We prove that our tracing strategy is optimal for
many programs which exhibit simple message patterns.
Even when non-optimal traces are generated, experiments
show that the traces are kept small, and are one to two
orders of magnitude smaller than traces of every message.

Future work includes a more precise characteriza-
tion of when our algorithm is optimal (e.g., transitive
races are sufficient for an optimal trace but not neces-
sary). Better tracing strategies may be possible. By
buffering more information about recent messages, more
informed tracing decisions might trace fewer races. By
employing optimizations for maintaining timestamps, the
overhead of passing timestamps and performing race
checks might also be reduced.

References

[1] Curtis, R. and L. Wittie, ‘‘BugNet: A Debugging
System for Parallel Programming Environments,’’
Proc. of the 3rd Intl. Conf. on Dist. Computing
Systems, pp. 394-399 (1982).

[2] Fidge, C. J., ‘‘Partial Orders for Parallel Debug-
ging,’’ SIGPLAN/SIGOPS Workshop on Parallel
and Distributed Debugging, pp. 183-194 Madis-
on, WI, (May 1988). Also appears in SIGPLAN
Notices 24(1) (January 1989).

[3] Lamport, Leslie, ‘‘Time, Clocks, and the Ordering
of Events in a Distributed System,’’ CACM
21(7) pp. 558-565 (July 1978).

[4] LeBlanc, Thomas J. and John M. Mellor-
Crummey, ‘‘Debugging Parallel Programs with
Instant Replay,’’ IEEE Trans. on Computers C-
36(4) pp. 471-482 (April 1987).

Appendix A. Proofs of Theorems

Theorem 1 (Tracing Theorem).
The tracing algorithm (Figure 3) traces at least one
message in each frontier race.

Proof. We prove below that a message is traced by the
algorithm when some predicate is true (Lemma 1), and
then prove that this predicate is true when a frontier race
exists (Lemma 2). At least one message in each frontier
race is thus traced.

�

Lemma 1.

If two messages, Send M Recv and PSend M

PRecv, exist such that PRecv /
HB Send ∧ PRecv

XO Recv ∧ SEND (Send) ∩ RECEIVE (PRecv)

≠ ∅, then the tracing algorithm traces Send M

Recv.

Proof. To establish a contradiction, assume that the
above conditions hold but the algorithm does not trace

Send M Recv. This message is not traced only if the
algorithm finds that the previous receive, PrevRecv (locat-

ed in line 2), happened before the sender: PrevRecv HB

Send. We must also have PRecv XO PrevRecv, other-
wise the algorithm would find PRecv as the previous re-

ceive. These orderings imply that PRecv HB Send,

which contradicts the assumption that PRecv /
HB Send.

�

Lemma 2.

If PSend M PRecv RacesWith Send M Recv,

then PRecv /
HB Send ∧ PRecv XO

Recv ∧ SEND (Send) ∩ RECEIVE (PRecv) ≠ ∅.

Proof. Because PSend M PRecv RacesWith Send
M Recv, there exists a P′ = 〈E′, HB ′ 〉 ∈ FSAME such

that Send M ′ PRecv (by Definition 3.2). We consider

each term in the conjunct PRecv /
HB Send ∧ PRecv

XO Recv ∧ SEND (Send) ∩ RECEIVE (PRecv) ≠ ∅.

(1) To establish a contradiction, assume that PRecv
HB Send. In addition, by the definition of

FSAME (part (3) of Definition 3.1), Send M ′

PRecv implies that ∀x ∈ E, x HB Send ⇔ x
HB ′ Send. Thus, if PRecv HB Send, we must

have PRecv HB ′ Send, which contradicts the as-

sumption that Send M ′ PRecv.

9

(2) To establish a contradiction, assume that Recv
XO PRecv. Then, P ′ cannot belong to FSAME,

since by its definition Recv XO PRecv implies
that Recv is before the frontier and thus Send

M ′ Recv (since Send M Recv), which con-

tradicts the assumption that Send M ′ PRecv.

(3) Since Send M ′ PRecv, we clearly have
SEND (Send) ∩ RECEIVE (PRecv) ≠ ∅.

�

Theorem 2 (Replay Theorem).
By forcing the traced messages to be delivered to
the same events during replay as during the original
execution, all messages will be delivered to the
correct events.

Proof. We prove below that any execution is determinis-
tic if it is free of frontier races. Because at least one mes-
sage of each frontier race is traced (Theorem 1), enforc-
ing the traced messages during replay ensures that replay
exhibits no frontier races. Replay will thus be determinis-
tic, causing all messages to be delivered to the same
events as during the original execution.

To establish a contradiction, assume that some pro-

gram execution P = 〈E, HB 〉 is nondeterministic but
free of frontier races. Since P is nondeterministic, anoth-
er execution of the program on the same input could pro-

duce a different execution, P′ = 〈E′, HB ′ 〉. P and P ′ ex-
hibit the same events and message deliveries up to some
point after which they differ. Let r be a receive event

where they first differ. That is, x HB y ⇔ x HB ′ y

for all events x,y where x HB r and y HB r. Also let
s 1 and s 2 be operations that send messages to r in P and

P ′: s 1
M r and s 2

M ′ r. The messages sent by s 1
and s 2 in P must race because P ′ meets the conditions in
Definition 3.1 and thus belongs to FSAME. The events x
and y are all the events before the frontier, and s 1, s 2, and
r are after the frontier. But P containing a frontier race
contradictions the assumption. Thus, P ′ cannot be dif-
ferent than P, implying that P is deterministic.

�

Theorem 3 (Tracing Complexity Theorem).

Given a program execution, P = 〈E, HB 〉, deter-
mining whether replay can be implemented by trac-
ing k or fewer messages is an NP-hard problem.

Proof. We use a reduction from the vertex cover prob-
lem, known to be NP-complete: given an undirected
graph, G = (V,E), does G have a vertex cover with k or
fewer vertices? A vertex cover is a subset V ′ of the ver-
tices such that every edge is connected to some vertex in
V ′. Given a graph, G, we reduce the problem of deter-
mining whether it has a vertex cover with k or fewer ver-
tices to the problem of determining whether a program
execution, P, can be replayed from a trace of k or fewer

messages.

From the graph G we construct P as follows. P
contains two processes between which a message is sent
for each of the n vertices in G. Process 1 in P contains n
send operations, and process 2 contains n receive opera-
tions. The i th send operation sends a null message over
logical channel i, and the i th receive operation specifies
that it will receive over logical channel i. Additional
channels are specified by the receive operations so that
two messages race iff an edge connects their correspond-
ing nodes in G. For an edge from vertex i to vertex j, the
i th receive operation also specifies that it will receive over
logical channel j. Because messages sent from process 1
may be delivered out of order, the i th and j th messages in
P race iff an edge exists from vertex i to vertex j in G.

G has a vertex cover with k or fewer vertices iff P
can be replayed from a trace of k or fewer messages. As-
sume that G has a vertex cover V ′ with k vertices. Each
vertex in V ′ corresponds to one of the messages sent by P.
P can be replayed from a trace of exactly these messages.
Since two messages race iff an edge connects their
corresponding vertices, a vertex cover ensures that at least
one message in each race is traced. By the Replay
Theorem (Theorem 2), a trace of these messages suffices
for replay. Conversely, assume that P can be replayed
from a trace T of k messages. T must contain at least one
message in each frontier race, or else replay will not be
frontier-race-free. Since two messages race in P iff an
edge connects the corresponding vertices in G, the ver-
tices corresponding to the messages in T are a vertex cov-
er.

�

Theorem 4 (Optimality Theorem).

For any program execution, P = 〈E, HB 〉, for
which the RacesWith relation is transitive, the trac-
ing algorithm (Figure 4) traces a minimal number
of messages required to implement replay.

Proof. As in Theorem 3, we can view the tracing prob-
lem as equivalent to computing a vertex cover of a graph.
The program execution P defines a graph G: the messages
in P define its vertices, and when two messages race an
edge is drawn between the corresponding vertices. As
discussed in Theorem 3, any trace sufficient for replay
must cover the vertices of G. When the RacesWith rela-
tion is transitive, G becomes a forest of completely con-
nected graphs. In this case, a minimal vertex cover is
easily computed. For each completely connected com-
ponent of n vertices, a minimal vertex cover consists of
any n −1 vertices. When races are transitive, our tracing
algorithm traces all but one of the mutually racing mes-
sages (the first racing message is not traced), which
corresponds to such a minimal vertex cover. Thus, the
trace is optimal.

�

10

