Reconfiguration Overhead in Dynamic Task-Based Implementations on FPGAs

Padmini Nagaraj University of California, Berkeley, Distributed Mentor Program, Researcher

Summer 2004

Professor Elaheh Bozorgzadeh University of California, Irvine, Distributed Mentor Program, Mentor

Reconfiguration Overhead

- Reconfiguration delay is crucial in dynamic reconfigurable architecture if it is exploited at runtime.
- Project: Study the trade-off between reconfiguration delay and performance of implemented task on FPGA device.
- Reconfiguration delay is highly correlated with the physical layout of the implementation.
- In Xilinx, reconfiguration is column by column.
- Number of columns of the layout of design is highly correlated with reconfiguration delay

Experimental Analysis

• Metrics used (Xilinx Place and Route Tools Provided):

- CLB Columns constrained
- Maximum Clock Frequency
- Maximum Pin Delay
- Average Delay of 10 Worst Nets
- Applications:
 - Matrix Multiply
 - Fast Fourier Transform
 - 2-D Discrete Cosine Transform
 - JPEG
 - Others: CORDIC, Multiply Accumulator, Comb Filter, etc.

Experimental Data: Matrix Multiplier

Matrix Multiplier constrained at 12 columns

Experimental Data: Fast Fourier Transform

8

Padmini Nagaraj - minar@ocf.berkeley.edu

Experimental Data: 2-D Discrete Cosine Transform

2DCT constrained at 28 columns

Padmini Nagaraj - minar@ocf.berkeley.edu

Experimental Data

	Minimum Number of CLB columns	Minimum Clock Period	Maximum Clock Frequency	Max Pin Delay	Worst 10 net Delay
FFT 256	20	7.571E-09	1.321E+08	5.228E-09	3.702E-09
FFT	16	1.053E-08	9.501E+07	6.711E-09	5.617E-09
2-D Disc. Cosine Transform	14	6.923E-09	1.444E+08	4.040E-09	3.382E-09
FFT 1024	12	9.312E-09	1.074E+08	5.462E-09	4.724E-09
Matrix Multiplier	10	6.466E-09	1.547E+08	4.235E-09	3.567E-09
CORDIC	4	8.453E-09	1.183E+08	2.876E-09	2.288E-09
Digital Down Converter	4	8.373E-09	1.194E+08	3.108E-09	2.377E-09
1-D Disc. Cosine Transform	2	4.857E-09	2.059E+08	2.835E-09	2.360E-09
Cascaded Int. Comb Filter	2	3.380E-09	2.959E+08	1.461E-09	1.009E-09
Multiply Accumulator	2	5.443E-09	1.837E+08	3.060E-09	2.388E-09
Sine/Cosine Look Up Table	2	0.000E+00	0.000E+00	1.677E-09	1.120E-09
Direct Digital Synthesizer	2	4.532E-09	2.207E+08	1.810E-09	1.233E-09
	1				10

Conclusion

- Studied the trade-off between reconfiguration delay and performance in implementation of applications on FPGA device
- Compared performance at different layout area for implementation
- Results show the following:
 - In several cases, by having a more relaxed area constraint, the performance can be improved by the tool and in some cases it doesn't for the following reasons:
 - I/O dominated applications
 - FPGA CAD tools are not matured enough to try small area for better performance