

Reconfiguration Overhead in Dynamic Task-Based

Implementation on FPGAs

Padmini Nagaraj

University of California, Berkeley

Distributed Mentor Program, Participant

minar@ocf.berkeley.edu

Summer 2004

Professor Elaheh Bozorgzadeh

University of California, Irvine

Distributed Mentor Program, Mentor

eli@ics.uci.edu

Reconfiguration Overhead in Dynamic Task-Based Implementation on FPGAs - Nagaraj

2

Table of Contents

I. Introduction 3

II. Project Description 5

III. Implementation Example: Matrix Multiplier 6

IV. Experimental Data 10

a. Matrix Multiplier 10

b. Fast Fourier Transform 12

c. 2-D Discrete Cosine Transform 15

d. Multiple Applications 17

V. Real World Application: JPEG 22

VI. Conclusion 25

Reconfiguration Overhead in Dynamic Task-Based Implementation on FPGAs - Nagaraj

3

I. Introduction

A Field Programmable Gate Array (FPGA) is a prefabricated integrated circuit chip with

Combinational Logic Blocks (CLBs) ordered into a grid configuration. (Figure 1) The FPGA

chip has no manufactured function, instead it is ‘programmable’; the user can create a circuit

design and change the configuration of the FPGA chip to that of the design. Opposed to

traditional integrated circuit chips, FPGAs can be programmed with numerous designs many

number of times. This is what makes FPGAs useful, they allow for practical testing of new

circuit chips without manufacturing the chip.1

Figure 1 Example Xilinx FPGA chip diagram

1 To learn more about FPGA and other Programmable Logic Devices visit:
http://en.wikipedia.org/wiki/Programmable_logic_device

Reconfiguration Overhead in Dynamic Task-Based Implementation on FPGAs - Nagaraj

4

An FPGA chip can be evaluated by different metrics: chip reconfiguration time, chip

performance time, and chip resources available. In this project we take a look at chip

configuration time vs. chip performance time. FPGA chips come in different flavors; some chips

only allow reconfiguration of the entire chip at a time and others allow partial reconfiguration,

reconfiguration of several columns or rows at a time. The chip used in this project is a Xilinx

Virtex 2 XCV2000E chip. It is partially reconfigurable at 2 columns of CLBs at a time. Columns

can also be reconfigured while the rest of the chip is running.

There are several steps to reconfiguring an FPGA chip with an application or design. A

Hardware Description Language (HDL) is used to write a program that describes the application.

Then a simulation program checks the code for logical and syntax errors. Next a synthesis tool

emulates the chip and tells the user if the application would work at a hardware level; it maps the

application to logic components such as AND and OR gates. At this level, the tool can only say

if the synthesis can run or not based on chip-technology independent rules. The next level tools

are the place and route (P&R) tools. Here the file produced by the synthesis tool is mapped to a

particular chip, so it is technology dependant. Errors at this level include setup and hold timing

violations, and if clock period and physical constraints cannot be met, among others. The P&R

tools also return a very good approximation of the timing delays, clock period and other details

about the application at chip level. The last step is to download the application onto the chip

itself. The chip usually comes with software that does this last step. The simulation software

used is ModelSim SE 5.7g and the synthesis tool is Synplicity Pro 7.6.1. The project level

software used was Xilinx Project Navigator 6.2.03i. Project Navigator allows the user to create

HDL code, simulate, synthesize, and P&R all from one application.

Reconfiguration Overhead in Dynamic Task-Based Implementation on FPGAs - Nagaraj

5

Application performance on chip depends on placement and routing, and P&R depends on

several constraints: timing, physical and I/O pin. A timing constraint restricts the P&R tools to a

certain clock period, so the tools will try to minimize any delays inside the application on the

chip. A physical constraint allows the application to be placed on only a certain part of the chip,

for example ten most left columns on chip. Lastly I/O pin constraint is self-explanatory, the P&R

tools are restricted to only using certain I/O pins that the user specifies. Each of these constraints

affects the way the application is routed and hence the performance, as the delays increases the

chip performance decreases and vice-versa.

For the purposes of this project, the P&R level provides an accurate enough estimation of the

various chip performances of an application that it is possible and practical to forgo the actual

writing to the chip. So all the data provided in this report can be assumed to come from P&R.

II. Project Description

For this project we are concerned with chip performance and chip configuration time. Chip

performance is represented by application frequency, how fast the application can run on chip in

clock cycles per second. Chip configuration time is represented by the physical configuration of

the application on the chip. Since the Virtex 2 is partially reconfigurable, it takes a few

milliseconds to reconfigure 2 CLB columns at once. So the number of CLB columns an

application occupies can be substituted as a more practical representation of chip reconfiguration

time. The more CLB columns an application takes, the more time it takes to be reconfigured.

For this project I synthesize several applications with physical constraints and observe the

relevant output, which is the application clock period. The smallest clock period returned by the

P&R tool for the application is also the maximum clock frequency for that application.

Reconfiguration Overhead in Dynamic Task-Based Implementation on FPGAs - Nagaraj

6

There are two parts to this project. The first part constrains individual applications several

times to get a relationship between physical constraint (reconfiguration time) and performance

time (clock frequency). In addition, I synthesize a number of different applications to find their

maximum performance time and minimum physical size. Second, I take a look at two real world

applications, JPEG encoder and decoder, break down their components and synthesize the

individual components to find their maximum frequency and their minimum physical size. In the

next section, I will walk through an example application from design to routing.

III. Implementation Example: 8 x 8 Matrix Multiplier

The matrix multiplier designed is a finite state machine with two 8 x 8 input matrices and one

8 x 8 output resultant matrix. There were several options in designing this application: use Block

RAMs (BRAMs) to store the inputs, use a large number of I/O pins to gain access to all the

inputs, use neither BRAMs nor a large number of I/O pins. Because I wanted to test the

application independent of other chip resources such as BRAMs, the first option was ruled out.

The third option would require a large amount of clock cycles to read in all the data required to

carry out the computations and was ruled out. That left the second option; even though there is a

heavy emphasis on access to I/O pins, this effect becomes background when comparing this

application at different physical constraints.

The block diagram in Figure 2 shows the specifics of this application. By having 8

multipliers work in parallel, the number of clock cycles is reduced. The individual components

are divided into four parts that are treated like four stages in a pipeline. Each stage is registered,

which allows for an increase in clock frequency.

Reconfiguration Overhead in Dynamic Task-Based Implementation on FPGAs - Nagaraj

7

To start, the settings for Project Navigator and Synthesis are given in Table 1. The Project

Navigator settings are used when creating a new project. Once a project has been created, the

synthesis settings can be found in the Project Navigator processes window. The menu for the

settings can be accessed thru a right click on the synthesize menu and choosing properties. To

create a constraint file for the project, the option can be found in the Project Navigator processes

window, under the User Constraints menu. Project Navigator provides a convenient graphical

user interface for creating constraints.

The simulation stage is where the application is tested for syntax and logic errors. Here is

where the test bench comes in. The test bench provides clock and input signals to drive the

application and by observing the output I can see if the application works correctly. Because this

is an iterative process and self explanatory, I will move on to the synthesis stage. The synthesis

stage is small in that the user just runs the synthesis program and makes sure there are no errors

or warnings. The longest part next to simulation is P&R. I created a constraint file that specified

a physical constraint to the application as well as a clock period constraint. The purpose of the

physical constraint was to limit the number of CLB columns the application occupied as well as

force the P&R tools to meet the clock period. Usually the first try in constraining is a best guess.

Using a binary search algorithm, re-synthesizing several times with different clock periods

allows me to find the minimum clock period for that physical constraint. The following is an

example of the steps to find the minimum clock frequency at a physical constraint of 14 CLB

columns:

1. First guess minimum clock period: 5ns – P&R tools returns 6.9 ns

2. Second guess minimum clock period: 7 ns – P&R tools return 6.49 ns

3. etc.

Reconfiguration Overhead in Dynamic Task-Based Implementation on FPGAs - Nagaraj

8

Figure 2 Matrix Multiplier Block Diagram

For this application I chose five different CLB column constraints. The application required a

minimum of ten CLB columns, this was the first constraint, and each subsequent constraint

became less restrictive by two CLB columns. In order to get a better picture of the constraints, it

A0[15:0]

B0[15:0]

A1[15:0]

B1[15:0]

A2[15:0]

B2[15:0]

A3[15:0]

B3[15:0]

Result[15:0]

Mult

Mult

Mult

Mult

Add

Add

Add

Matrix Multiply Block Diagram

A4[15:0]

B4[15:0]

A5[15:0]

B5[15:0]

A6[15:0]

B6[15:0]

A7[15:0]

B7[15:0]

Mult

Mult

Mult

Mult

Add

Add

Add

Add

Reconfiguration Overhead in Dynamic Task-Based Implementation on FPGAs - Nagaraj

9

is also important to compare it to the application unconstrained, which means that 0 columns of

CLB are constrained and the P&R tools has the entire chip to place the application.

Table 1 Project Navigator and Synthesis Options
Project Navigator Options

Device Family Virtex2
Device xc2v2000

Package ff896
Speed Grade -6

Top level Module Type HDL
Synthesis Tool Synplify Pro(VHDL/Verilog)

Simulator ModelSim
Generated Simulation Language VHDL

Synthesis Options
Symbolic FSM Compiler Check

Resource Sharing Check
Frequency 0

Number of Critical Paths 0
Number of Start/End Points 0

Write Mapped Verilog Netlist Not Checked
Write Mapped VHDL Netlist Not Checked
Write Vendor Constraint File Check

VHDL Specific Options
Default Enum Encoding Goal Default

Push Tristates across Process/Block
Boundaries Check

Verilog Specific Options
Verilog 2001 Check

Push Tristates across Process/Block
Boundaries Check

Device Option
Use FSM Explorer Data Check

Modular Flow Not Checked
Retiming Not Checked
Pipelining Checked

Disable I/O Insertion Not Checked
Fanout Guide 100

Constraint File Options (* User specified)
Constraint File Name constraint.ucf *
Add File to Project Check

Reconfiguration Overhead in Dynamic Task-Based Implementation on FPGAs - Nagaraj

10

IV. Experimental Data

The majority of the applications here, with exception to the matrix multiplier, were generated

by Xilinx CORE Generator and they are the Intellectual Property of Xilinx. Three applications

will be examined in detail in this section: Matrix Multiplier, Fast Fourier Transform (FFT), and

2-D Discrete Cosine Transform (2DCT). At the end of this report Table 7 has a description from

CORE Generator for each application used.

The metrics used here are clock frequency, CLB columns occupied by the application, and

the delays from routing. There are two kinds of delays that are relevant here, maximum pin delay

and average connection delay on the worst 10 nets. The maximum pin delay is the delay from

where the application is on the chip to the farthest I/O pin. The worst 10 net delay is the average

routing delay inside the application itself. I will sometimes use the words ‘inter’ and ‘intra’ to

refer to pin and net delay respectively. This is because pin delay is delay outside of the

application and the worst 10 net delay is the delay inside the application.

A. Matrix Multiplier

When the matrix multiplier is constrained to less than half of the chip, its frequency is about

17 KHz less than the maximum, which is when it is unconstrained. (Figure 3) The reason for this

discrepancy, where the maximum frequency is relatively unchanging and then changes very

suddenly, becomes obvious when looking at the layout of the application. In Figure 5, the

application is very focused inside the constraints. In Figure 6, in the unconstrained layout, the

application is spread out in a ring configuration close to the outer edges of the chip. This is

directly related to the design decision made to use I/O pins instead of BRAMs. Because there are

so many I/O pins, the delay between the I/O pins and the location of the application becomes

significant, and in an attempt to reduce this delay the P&R tools place each part of the

Reconfiguration Overhead in Dynamic Task-Based Implementation on FPGAs - Nagaraj

11

application close to the set of I/O pins it needs access tools. (Figure 4) This explains the dramatic

increase in clock frequency as well as the decrease in maximum pin delay.

Matrix Multiplier CLock Frequency vs. CLB
Columns

1.450E+08

1.500E+08

1.550E+08

1.600E+08

1.650E+08

1.700E+08

10 12 14 16 Whole
Chip

Physical Constraint (Number of CLB Columns)

M
ax

im
um

C

lo
ck

 F
re

qu
en

cy
 (H

z)

Figure 3 Matrix Multiplier Clock Frequency vs. CLB Columns

Matrix Multiplier Delays and Clock Period

0.000E+00
1.000E-09

2.000E-09
3.000E-09

4.000E-09
5.000E-09

6.000E-09
7.000E-09

10 12 14 16 Whole Chip

Physical Constraint (Number of CLB Columns)

Minimum Clock Period (s) Maximum Pin Delay (s) Worst 10 Net Delays (s)

Figure 4 Matrix Multiplier Delays and Clock Period

Reconfiguration Overhead in Dynamic Task-Based Implementation on FPGAs - Nagaraj

12

Figure 5 Matrix Multiplier constrained at 12 columns Figure 6 Matrix Multiplier unconstrained

Table 2 Matrix Multiplier Data

 Physical Constraint (Number of CLB Columns)

 10 12 14 16 Whole Chip

Minimum Clock
Period (s) 6.466E-09 6.476E-09 6.496E-09 6.496E-09 5.930E-09

Maximum Clock
Frequency (Hz) 1.547E+08 1.544E+08 1.539E+08 1.539E+08 1.686E+08

Maximum Pin
Delay (s) 4.235E-09 4.174E-09 3.938E-09 4.120E-09 3.787E-09

Worst 10 Net
Delays (s) 3.567E-09 3.692E-09 3.406E-09 3.470E-09 3.396E-09

B. Fast Fourier Transform

From Figure 7 it is obvious that the most efficient configuration in terms of clock frequency

is when the FFT module is placed within 20 CLB columns on the FPGA chip. It follows that

Reconfiguration Overhead in Dynamic Task-Based Implementation on FPGAs - Nagaraj

13

when the constraint is more relaxed that the P&R tools should continue to place the module

within the 20 columns in order to get maximum clock frequency, but instead the tools tend to

place the module throughout the constraint space. The screen shots of the application constrained

at 20 columns as well as unconstrained are shown in Figures 9 and 10. Also as the period

decreases, the delays decrease as well. (Figure 8)

FFT Clock Frequency vs. CLB Columns

0.000E+00
2.000E+07
4.000E+07
6.000E+07
8.000E+07
1.000E+08
1.200E+08
1.400E+08
1.600E+08

16 20 24 28 32 Whole
Chip

Physical Constraints (Number of CLB Columns)

M
ax

im
um

 C
lo

ck
 F

re
qu

en
cy

(H

z)

Figure 7 FFT Clock Frequency vs. CLB Columns

Reconfiguration Overhead in Dynamic Task-Based Implementation on FPGAs - Nagaraj

14

FFT Delays and Clock Period

0.000E+00

2.000E-09

4.000E-09

6.000E-09

8.000E-09

1.000E-08

1.200E-08

16 20 24 28 32 Whole
Chip

Physical Constraint (Number of CLB Columns)

Minimum Clock Period (s) Maximum Pin Delay(s) Worst 10 Net Delay(s)

Figure 8 FFT Delays and Clock Period

Table 3 Fast Fourier Transform Data

 Physical Constraint (Number of CLB columns)

 16 20 24 28 32 Whole Chip

Minimum Clock
Period (s) 1.053E-08 7.214E-09 8.276E-09 8.276E-09 8.170E-09 8.365E-09

Maximum
Clock

Frequency(Hz)
9.501E+07 1.386E+08 1.208E+08 1.208E+08 1.224E+08 1.195E+08

Maximum Pin
Delay(s) 6.711E-09 5.545E-09 6.227E-09 5.397E-09 5.864E-09 5.540E-09

Worst 10 Net
Delay(s) 5.617E-09 4.736E-09 5.404E-09 4.778E-09 5.067E-09 4.776E-09

Reconfiguration Overhead in Dynamic Task-Based Implementation on FPGAs - Nagaraj

15

Figure 9 FFT constrained at 20 columns Figure 10 FFT unconstrained

C. 2-D Discrete Cosine Transform

The P&R tools do a better job with the 2DCT application. All of the constraints, with the

exception of the two on either end of Figure 11, result in a maximum clock frequency of

approximately 160 MHz. It appears that the P&R tools are not efficient when given too much

restriction or too little restriction.

The delays in Figure 12 follow the clock period. As the clock period increases, inter and intra

delays increase. The odd data from this set is when the application is unconstrained. The clock

period increases slightly from the maximum 12 column constrain, but the delays increase much

more than the 12 column constrain. This is probably explained by application spread out fully

across the chip, instead of clustered closer to cut down the intra delay. The most efficient

configuration with the least amount of delay and best clock frequency is shown in Figure 13.

Opposite of it is the configuration in Figure 14; it takes up the most space and is the least

efficient, with the most delay.

Reconfiguration Overhead in Dynamic Task-Based Implementation on FPGAs - Nagaraj

16

2-D Discretre Cosine Transform Clock Frequency
vs. CLB Columns

0.000E+00
2.000E+07
4.000E+07
6.000E+07
8.000E+07
1.000E+08
1.200E+08
1.400E+08
1.600E+08
1.800E+08

12 16 20 24 28 Whole
Chip

Physical Constraint (Number of CLB Columns)

M
ax

im
um

 C
lo

ck
 F

re
qu

en
cy

(H

z)

Figure 11 2-D Discrete Cosine Transform Clock Frequency vs. CLB Columns

2-D Discrete Cosine Transform Delays and Clock
Period

0.000E+00
1.000E-09
2.000E-09
3.000E-09
4.000E-09
5.000E-09
6.000E-09
7.000E-09
8.000E-09

12 16 20 24 28 Whole
Chip

Physical Constraint (Number of CLB Columns)

Minimum Clock Period (s) Maximum Pin Delay Worst 10 Net Delays

Figure 12 2-D Discrete Cosine Transform Delays and Clock Period

Reconfiguration Overhead in Dynamic Task-Based Implementation on FPGAs - Nagaraj

17

Table 4 2-D Discrete Cosine Transform Data

 Physical Constraint (Number of CLB Columns)

CLB Columns 12 16 20 24 28 Whole Chip

Minimum
Clock Period

(s)
7.169E-09 6.349E-09 6.197E-09 6.286E-09 6.163E-09 7.457E-09

Maximum
Clock

Frequency
(Hz)

1.395E+08 1.575E+08 1.614E+08 1.591E+08 1.623E+08 1.341E+08

Maximum Pin
Delay 4.798E-09 4.208E-09 4.163E-09 4.088E-09 3.707E-09 6.367E-09

Worst 10 Net
Delays 3.667E-09 3.420E-09 3.373E-09 3.295E-09 3.280E-09 5.711E-09

Figure 13 2DCT constrained at 28 columns Figure 14 2DCT unconstrained

D. Different Applications and Their Performance

There were several applications that I found the maximum clock frequency for while

constrained with the minimum number of CLB columns. These applications and their

Reconfiguration Overhead in Dynamic Task-Based Implementation on FPGAs - Nagaraj

18

corresponding data are listed in Table 5. In order to compare applications in terms of maximum

frequencies, this table does not provide enough data, so included in Figures 17 - 28 are screen

captures of each application on chip with minimum CLB column constraints. By looking at the

spread of the application, a better comparison can be made.

The relative maximum frequencies can be estimated just from looking at the screen captures.

For example, by the packed density of the FFT application in Figure 18, I can estimate that it will

have one of the smallest maximum frequencies. (Figure 15) This is because the frequency is the

inverse of the clock period, and in such a packed configuration, the clock period has to be large

enough to allow for all the delays from the increased routing. By the relative smallness in size of

the Cascaded Comb Filter (Figure 25) or the light density of the 1-D Discrete Cosine Transform

(Figure 24) I can estimate they will have large maximum frequencies compared to the rest of the

applications. They have very small to almost no routing delays hence the clock cycle can be very

small. On a side note, the Sine/Cosine Look Up Table (Figure 27) is so small that it doesn’t have

a clock signal because the routing delays are insignificant and can run at any frequency.

Multiple Applications Maximum Frequencies

0.000E+00
5.000E+07
1.000E+08
1.500E+08
2.000E+08
2.500E+08
3.000E+08
3.500E+08

FF
T

 2
56

F
FT

2-
D

 D
is

c.
C

os
in

e
T

ra
ns

fo
rm

FF
T

10
24

M
at

rix
M

ul
tip

lie
r

C
O

R
D

IC

D
ig

ita
l D

ow
n

C
on

ve
rt

er

1-
D

 D
is

c.
C

os
in

e
T

ra
ns

fo
rm

C
as

ca
de

d
In

t.
C

om
b

Fi
lte

r

M
ul

tip
ly

A
cc

um
ul

at
or

S
in

e/
C

os
in

e
Lo

ok
 U

p
T

ab
le

D
ire

ct
 D

ig
ita

l
S

yn
th

es
iz

er

Applications

Fr
eq

ue
nc

y
(H

z)

Figure 15 Multiple Applications Maximum Frequency

Reconfiguration Overhead in Dynamic Task-Based Implementation on FPGAs - Nagaraj

19

Multiple Applications Delays

0.000E+00
2.000E-09
4.000E-09
6.000E-09
8.000E-09
1.000E-08
1.200E-08

FF
T

25
6

FF
T

2-
D

 D
is

c.
C

os
in

e
Tr

an
sf

or
m

FF
T

10
24

M
at

rix
M

ul
tip

lie
r

C
O

R
D

IC

D
ig

ita
l D

ow
n

C
on

ve
rte

r

1-
D

 D
is

c.
C

os
in

e
Tr

an
sf

or
m

C
as

ca
de

d
In

t.
C

om
b

Fi
lte

r

M
ul

tip
ly

A
cc

um
ul

at
or

S
in

e/
C

os
in

e
Lo

ok
 U

p
Ta

bl
e

D
ire

ct
 D

ig
ita

l
S

yn
th

es
iz

er

Applications

Minimum Clock Period (s) Max Pin Delay (s) Worst 10 net Delay (s)

Figure 16 Multiple Applications Delays

Table 5 Application Performance

Minimum

Number of
CLB columns

Minimum
Clock Period

Maximum
Clock

Frequency
Max Pin Delay Worst 10 net

Delay

FFT 256 20 7.571E-09 1.321E+08 5.228E-09 3.702E-09

FFT 16 1.053E-08 9.501E+07 6.711E-09 5.617E-09

2-D Disc. Cosine
Transform 14 6.923E-09 1.444E+08 4.040E-09 3.382E-09

FFT 1024 12 9.312E-09 1.074E+08 5.462E-09 4.724E-09

Matrix Multiplier 10 6.466E-09 1.547E+08 4.235E-09 3.567E-09

CORDIC 4 8.453E-09 1.183E+08 2.876E-09 2.288E-09

Digital Down Converter 4 8.373E-09 1.194E+08 3.108E-09 2.377E-09

1-D Disc. Cosine
Transform 2 4.857E-09 2.059E+08 2.835E-09 2.360E-09

Cascaded Int. Comb
Filter 2 3.380E-09 2.959E+08 1.461E-09 1.009E-09

Multiply Accumulator 2 5.443E-09 1.837E+08 3.060E-09 2.388E-09

Reconfiguration Overhead in Dynamic Task-Based Implementation on FPGAs - Nagaraj

20

Sine/Cosine Look Up
Table 2 0.000E+00 0.000E+00 1.677E-09 1.120E-09

Direct Digital
Synthesizer 2 4.532E-09 2.207E+08 1.810E-09 1.233E-09

Figure 17 FFT 256 constrained at 20 columns Figure 18 FFT constrained at 16 columns

Figure 19 2DCT constrained at 14 columns Figure 20 FFT 1024 constrained at 12 columns

Reconfiguration Overhead in Dynamic Task-Based Implementation on FPGAs - Nagaraj

21

Figure 21 Matrix Multiplier constrained at 10 columns Figure 22 CORDIC constrained at 4 columns

Figure 23 DDConverter constrained at 4 columns Figure 24 1DCT constrained at 2 columns

Reconfiguration Overhead in Dynamic Task-Based Implementation on FPGAs - Nagaraj

22

Figure 25 CCFilter constrained at 2 columns Figure 26 Mult. Acc. constrained at 2 columns

Figure 27 SinCosLUT constrained at 2 columns Figure 28 DDSynth. constrained at 2 columns

Reconfiguration Overhead in Dynamic Task-Based Implementation on FPGAs - Nagaraj

23

V. Real World Application: JPEG

A more practical example of FPGA applications is JPEG encoding and decoding. The Joint

Photographic Experts Group (JPEG) image compression takes several steps. To encode an image

in JPEG, the image has to be coded and then compressed. (Figure 29) To decode a compressed

image from JPEG, the image has to be decompressed and decoded. (Figure 30)

The modules that I will look at are the three in the middle: the color changing module, the

2DCT, the quantize and each of their inverses. The data for the modules is given in Table 6.

There is a nice symmetry between the encoder and decoder, not just in structure but also in clock

frequencies and delays.

Figure 29 JPEG encoding steps Figure 30 JPEG decoding steps.

YCrCb->RGB

Inverse 2-D Disc.
Cosine Transform

Image Block
8 x 8 Pixels

Decoding

Inverse Quantize

Image Block
8 x 8 Pixels

RGB-> YCrCb

2-D Disc. Cosine
Transform

Quantize

Encoding

Reconfiguration Overhead in Dynamic Task-Based Implementation on FPGAs - Nagaraj

24

JPEG Application Maximum Frequencies

0.000E+00
2.000E+07
4.000E+07
6.000E+07
8.000E+07
1.000E+08
1.200E+08
1.400E+08
1.600E+08
1.800E+08

X
A

P
P

63
7

R
G

B
 to

Y
C

bC
r

2-
D

 D
is

c.
C

os
in

e
Tr

an
sf

or
m

X
A

P
P

61
5

Q
au

nt
iz

at
io

n

X
A

P
P

61
5

In
ve

rs
e-

Q
ua

nt
iz

at
io

n

In
ve

rs
e

2-
D

D
is

c.
 C

os
in

e
Tr

an
sf

or
m

X
A

P
P

23
8Y

C
rC

b
to

 R
G

B

Applications

Fr
eq

ue
nc

y
(H

z)

Figure 31 JPEG Applications Maximum Frequencies

JPEG Clock Period and Delays

0.000E+00
2.000E-09
4.000E-09
6.000E-09
8.000E-09
1.000E-08

X
A

P
P

63
7

R
G

B
 to

Y
C

bC
r

2-
D

 D
is

c.
C

os
in

e
Tr

an
sf

or
m

X
A

P
P

61
5

Q
au

nt
iz

at
io

n

X
A

P
P

61
5

In
ve

rs
e-

Q
ua

nt
iz

at
io

n

In
ve

rs
e

2-
D

D
is

c.
 C

os
in

e
Tr

an
sf

or
m

X
A

P
P

23
8Y

C
rC

b
to

 R
G

B

Applications

Clock Period (s) Max Pin Delay Worst 10 net Delay

Figure 32

Reconfiguration Overhead in Dynamic Task-Based Implementation on FPGAs - Nagaraj

25

Table 6 JPEG Applications Data

XAPP637
RGB to
YCrCb

2-D Disc.
Cosine

Transform

XAPP615
Quantization

XAPP615
Inverse-

Quantization

Inverse 2-D
Disc. Cosine
Transform

XAPP238
YCrCb to

RGB

Num of CLB columns 2 8 6 6 8 2

Clock Period 8.343E-09 8.249E-09 8.378E-09 7.376E-09 6.580E-09 6.469E-09

Clock Frequency 1.199E+08 1.212E+08 1.194E+08 1.356E+08 1.520E+08 1.546E+08

Max Pin Delay 3.571E-09 4.097E-09 4.950E-09 4.847E-09 3.583E-09 3.130E-09

Worst 10 net Delay 2.712E-09 3.121E-09 4.146E-09 4.026E-09 3.368E-09 2.377E-09

Figure 33 XAPP636 constrained at 2 columns Figure 34 XAPP238 constrained at 2 columns

Reconfiguration Overhead in Dynamic Task-Based Implementation on FPGAs - Nagaraj

26

Figure 35 Quantize constrained at 8 columns Figure 36 IQuantize constrained at 8 columns

VI. Conclusion

The general trend observed in the applications has been that the P&R tools are not very

intelligent in their tasks. On average I expected application performance to increase as the

constraints were relaxed. Instead, the general algorithm of the tool spread the application across

the chip. Some applications, such as the matrix multiplier, work well unconstrained because of

heavy dependence on I/O pins. But other applications that have a lot of intra routing suffer when

unconstrained. They perform better when the user actually defines an area of the FPGA chip that

the application is constrained to. In general the routing and pin delays of an application closely

follow the clock period. This is logical because as the clock period decreases, there is less time

for signals to get across the application as well as the chip.

Reconfiguration Overhead in Dynamic Task-Based Implementation on FPGAs - Nagaraj

27

Table 7 Descriptions of all CORE Generator Applications

1-D Discrete Cosine Transform
This core calculates the 1-Dimensional Discrete Cosine Transform using a Distributed
Arithmetic approach. The core accepts an incoming parallel data word and performs the DCT or
Inverse DCT mathematical operation. This core allows the customization of parameters, such as
DCT points, input data width, coefficient width and result width.
1024 Fast Fourier Transform
The vFFT1024 fast Fourier transform (FFT) Core computes a 1024-point complex forward FFT
or inverse FFT (IFFT). The input data is a vector of 1024 complex values represented as 16-bit
2’s complement numbers – 16-bits for each of the real and imaginary component of a data
sample. The 1024 element output vector is also represented using 16 bits for each of the real and
imaginary components of an output sample. Three memory and data I/O interfaces are supported.
The user interface can be configured to allow the vfft1024 core to simultaneously input new data,
transform data stored in memory, and to output previous results.
2-D Discrete Cosine Transform
This core performs the 8-point 2-Dimensional Discrete Cosine Transform (Forward and Inverse).
It uses the Distributed Arithmetic approach in implementing the design. This core offers
parameterization of the widths of input data, coefficients, internal data path and results.
256 Fast Fourier Transform
The vfft256v2 fast Fourier transform (FFT) Core computes a 256-point complex forward FFT or
inverse FFT (IFFT). The input data is a vector of 256 complex values represented as 16-bit 2’s
complement numbers – 16-bits for each of the real and imaginary component of a data sample.
The 256 element output vector is also represented using 16 bits for each of the real and
imaginary components of an output sample. Three memory and data I/O interfaces are supported.
The user interface can be configured to allow the vfft256v2 core to simultaneously input new
data, transform data stored in memory, and to output previous results.
Cascaded Integrator Comb Filter
Cascaded Integrator Comb (CIC) Filter or Hogenauer Filter. The CIC filter is useful for
implementing high sample rate changes in multirate systems. The core supports both
interpolation and decimation functions. All Virtex, VirtexE, Virtex2, Virtex2Pro and all Spartan
II devices are supported.
CORDIC
The Xilinx CORDIC LogiCORE is a drop-in module for the Virtex(TM), Virtex(TM)-E,
Virtex(TM)-II and Spartan(TM)-II FPGA families. The core is fully synchronous, using a single
clock. Options include parameterizable data width, control signals and functional selection. The
core supports either serial architecture for minimal area implementations, or parallel architecture
for speed optimization. The CORDIC incorporates Xilinx Smart-IP technology for maximum
performance. The core is delivered through the Xilinx CORE Generator System and integrates
seamlessly with the Xilinx design flow.
Digital Down Converter
A direct digital downconverter (DDC) typically performs channel access functions in all-digital
receivers. The DDC Core accepts an input signal sampled at a high rate (~100 MHz), down
converts a desired frequency band-of-interest (channel) to baseband (0 Hz) and adjusts the
sample rate by a factor that is programmable, and ranges from 4 to 1048512. Modern base station
transceivers will often require a large number of DDCs to support multi-carrier environments or
for coherently down-converting and combining a number of narrow-band channels into one

Reconfiguration Overhead in Dynamic Task-Based Implementation on FPGAs - Nagaraj

28

wide-band digital signal. The DDC is typically located at the front-end of the signal processing
conditioning chain, close to the A/D, and is usually required to support high-sample rate
processing in the region of 100+ mega-samples-per-second.
Direct Digital Synthesizer
The Direct Digital Synthesizer LogiCORE from Xilinx is a drop-in module for Virtex(TM),
Virtex(TM)-E, Virtex(TM)-II, Virtex(TM)-II Pro, Spartan(TM)-II and Spartan(TM)-III FPGAs.
Direct digital synthesizers (DDS), or numerically controlled oscillators (NCO), are important
components in many digital communication systems. The Xilinx DDS LogiCORE features sine,
cosine or quadrature outputs, sine/cosine table depths ranging from 8 to 65536 samples, and 4 to
32-bit output sample precision. The core supports up to 16 channels by time-sharing the
sine/cosine table which dramatically reduces the area requirement when multiple channels are
needed. Xilinx Smart-IP technology is also leveraged for maximum performance. The core has a
phase dithering option and a Taylor series correction option that provides high dynamic range
signals using minimal FPGA resources. In addition, the core has an optional phase offset
capability, providing support for multiple synthesizers with precisely controlled phase
differences. It is delivered through the Xilinx CORE Generator System and integrates seamlessly
with the Xilinx design flow.
Fast Fourier Transform
The Fast Fourier Transform (FFT) is a computationally efficient algorithm for computing the
Discrete Fourier Transform (DFT). The FFT Core can compute 16 to 16384-point forward or
inverse complex transforms. The input data is a vector of complex values represented as twos-
complement numbers 8, 12, 16, 20, or 24 bits wide. Similarly, the phase factors can be 8, 12, 16,
20, or 24 bits wide. All memory is on-chip using either Block RAM or Distributed RAM. Three
arithmetic types are available: full-precision unscaled, scaled fixed-point, and block-floating
point. Several parameters are run-time configurable: the point size, the choice of forward or
inverse transform, and the scaling schedule. Three architectures are available to provide a
tradeoff between size and transform time.
Multiply Accumulator
The MAC Core implements a sum-of-products calculation and is a key module for constructing
FIR and multirate filter structures. Based on user supplied information, the MAC Core
determines a suitable pipelining strategy to meet a specified performance objective using
minimal FPGA area. The sum-of-products is computed using full-precision arithmetic, and an
optional round operation (truncation, round-to-nearest, convergent or round-to-even) can be
applied to the full-precision result before presenting the final value on the Core output port.
Sine/Cosine Look-up Table
The sine/cosine look-up table LogiCORE from Xilinx is a drop-in module for Virtex(TM),
Virtex(TM)-E, Virtex(TM)-II, Virtex(TM)-II Pro, Spartan(TM)-II and Spartan(TM)-III FPGAs.
This parameterizable module returns the value sin(theta) and/or the value cos(theta).

