Reconfiguration Overhead in Dynamic Task-Based Implementations on FPGAs

> Padmini Nagaraj UCB, Distributed Mentor Program, Researcher

> > **Summer 2004**

Professor Elaheh Bozorgzadeh UCI, Distributed Mentor Program, Mentor

Outline

- I. Introduction
- II. Project Description
- III. Example Application: Matrix Multiplier
- IV. Experimental Data
 - A. Matrix Multiplier
 - B. Fast Fourier Transform
 - C. 2-D Discrete Cosine Transform
 - D. Multiple Applications
- V. Real World Application: JPEG
- VI. Conclusion

Π III IV_{ABCD}V VI Introduction

GOAL: Application

configuration time vs. performance time.

Number of CLB Columns Application Clock Frequency

Several small to large independent applications

Real world example: JPEG

Ι Π IV_{ABCD}V VI Example Application: Matrix Multiplier

8 x 8 Matrix Multiplier

Needs Lots of Data!

a.) BRAMs

b.) Lots of I/O pins

c.) Neither

Interested in seeing effects independent of other chip resources

Okay.

Really slow! Too much time reading inputs.

I II III IV_{A B C D} V VI Example Application: Matrix Multiplier (cont...)

I II III IV A B C D V VI Example Application: Matrix Multiplier (cont...)

1.) Write code 2.) Simulate - Testbench 3.) Synthesis 4.) Place and Route -Constrain Time and Columns

I II III IV_{ABCD} V VI Experimental Data

Xilinx CORE Generator Intellectual Property of Xilinx

Metrics Used:

CLB Columns Maximum Clock Frequency Maximum Pin Delay Average Delay of 10 Worst Nets

I II III IV_{A B C D} V VI Experimental Data: Matrix Multiplier

I II III IV_{ABCD} V VI Experimental Data: Matrix Multiplier (cont...)

Matrix Multiplier constrained at 12 columns Matrix M Padmini Nagaraj - minar@ocf.berkeley.edu

I II III IV_{ABCD} V VI Experimental Data: Matrix Multiplier (cont...)

	Physical Constraint (number of CLB columns)						
	10	12	14	16	Whole Chip		
Minimum Clock Period (s)	6.466E-09	6.476E-09	6.496E-09	6.496E-09	5.930E-09		
Maximum Clock Frequency (Hz)	1.547E+08	1.544E+08	1.539E+08	1.539E+08	1.686E+08		
Maximum Pin Delay (s)	4.235E-09	4.174E-09	3.938E-09	4.120E-09	3.787E-09		
Worst 10 Net Delays (s)	3.567E-09	3.692E-09	3.406E-09	3.470E-09	3.396E-09		

I II III IV_{A B C D} V VI Experimental Data: Fast Fourier Transform

I II III IV_{A B C D} V VI Experimental Data: Fast Fourier Transform (cont...)

I II III IV_{A B C D} V VI Experimental Data: Fast Fourier Transform (cont...)

	Physical Constraint (Number of CLB columns)							
	16	20	24	28	32	Whole Chip		
Minimum Clock Period (s)	1.053E-08	7.214E-09	8.276E-09	8.276E-09	8.170E-09	8.365E-09		
Maximum Clock Frequency (Hz)	9.501E+07	1.386E+08	1.208E+08	1.208E+08	1.224E+08	1.195E+08		
Maximum Pin Delay (s)	6.711E-09	5.545E-09	6.227E-09	5.397E-09	5.864E-09	5.540E-09		
Worst 10 Net Delay (s)	5.617E-09	4.736E-09	5.404E-09	4.778E-09	5.067E-09	4.776E-09		

I II III IV_{ABCD} V VI Experimental Data: 2-D Discrete Cosine Transform

I II III IV_{A B C D} V VI Experimental Data: 2-D Discrete Cosine Transform (cont...)

17 2DCT unconstrained

I II III IV_{A B C D} V VI Experimental Data: 2-D Discrete Cosine Transform (cont...)

	Physical Constraint (number of CLB columns)						
CLB Columns	12	16	20	24	28	Whole Chip	
Minimum Clock Period (s)	7.169E-09	6.349E-09	6.197E-09	6.286E-09	6.163E-09	7.457E-09	
Maximum Clock Frequency (Hz)	1.395E+08	1.575E+08	1.614E+08	1.591E+08	1.623E+08	1.341E+08	
Maximum Pin Delay	4.798E-09	4.208E-09	4.163E-09	4.088E-09	3.707E-09	6.367E-09	
Worst 10 Net Delays	3.667E-09	3.420E-09	3.373E-09	3.295E-09	3.280E-09	5.711E-09	

I II III IV_{ABCD} V VI Experimental Data: Multiple Applications

I II III IV_{ABCD} V VI Experimental Data: Multiple Applications (cont...)

	Minimum Number of CLB columns	Minimum Clock Period	Maximum Clock Frequency	Max Pin Delay	Worst 10 net Delay
FFT 256	20	7.571E-09	1.321E+08	5.228E-09	3.702E-09
FFT	16	1.053E-08	9.501E+07	6.711E-09	5.617E-09
2-D Disc. Cosine Transform	14	6.923E-09	1.444E+08	4.040E-09	3.382E-09
FFT 1024	12	9.312E-09	1.074E+08	5.462E-09	4.724E-09
Matrix Multiplier	10	6.466E-09	1.547E+08	4.235E-09	3.567E-09
CORDIC	4	8.453E-09	1.183E+08	2.876E-09	2.288E-09
Digital Down Converter	4	8.373E-09	1.194E+08	3.108E-09	2.377E-09
1-D Disc. Cosine Transform	2	4.857E-09	2.059E+08	2.835E-09	2.360E-09
Cascaded Int. Comb Filter	2	3.380E-09	2.959E+08	1.461E-09	1.009E-09
Multiply Accumulator	2	5.443E-09	1.837E+08	3.060E-09	2.388E-09
Sine/Cosine Look Up Table	2	0.000E+00	0.000E+00	1.677E-09	1.120E-09
Direct Digital Synthesizer	2	4.532E-09	2.207E+08	1.810E-09	1.233E-09

I II III IV_{A B C D} V VI Experimental Data: Multiple Applications (cont...)

FFT constrained at 16 columns

JPEG encoding steps JPEG decoding steps Padmini Nagaraj - minar@ocf.berkeley.edu 22

Padmini Nagaraj - minar@ocf.berkeley.edu

	XAPP637 RGB to YCbCr	2-D Disc. Cosine Transfor m	XAPP615 Qauntiza tion	XAPP615 Inverse- Quantiza tion	Inverse 2-D Disc. Cosine Transfor m	XAPP238Y CrCb to RGB
Num of CLB columns	2	8	6	6	8	2
Clock Period	8.343E-09	8.249E-09	8.378E-09	7.376E-09	6.580E-09	6.469E-09
Clock Frequency	1.199E+08	1.212E+08	1.194E+08	1.356E+08	1.520E+08	1.546E+08
Max Pin Delay	3.571E-09	4.097E-09	4.950E-09	4.847E-09	3.583E-09	3.130E-09
Worst 10 net Delay	2.712E-09	3.121E-09	4.146E-09	4.026E-09	3.368E-09	2.377E-09
	1					24

26 IQuantize constrained at 8 columns

I II III IV_{ABCD} V VI Conclusion

Place and Route Tools

Density of application affects everything

User defined constraints

Lack sufficient intelligence

Clock period, maximum pin delay and worst 10 net delay

Helps Place and Route tools