Enveloping Multiple Obstacles with Hexagonal Metamorphic Robots

Jennifer E. Walter Joy W. Kamunyori
Vassar College Vassar College

walter@cs.vassar.edu jokamunyori@vassar.edu

Abstract

The problem addressed is reconfiguration planning for a metamorphic robotic system composed of any number of hexagonal
robots when multiple simple obstacles are embedded in the goal environment. Simple obstacles are defined as obstacles that have
even surfaces with no pockets or indentations and that, as a group, form no narrow corridors or isolated areas.

We extend our earlier work on filling multiple pockets in an obstacle to the case where the goal may contain several simple
obstacles. In this paper, we present algorithms that determine how many obstacles are in the goal by logically grouping the obstacle
cells in the goal into distinct connected components, order them lexicographically from north-west to south-east, and then link
them by shortest path bridges to form one large obstacle with multiple pockets. We subsequently use techniques presented in our
earlier papers to envelop the composite obstacle.

Index Terms

Metamorphic robots, hexagonal robots, obstacle, pocket, distributed reconfiguration

I. INTRODUCTION

A self-reconfigurablg6] robotic system is a collection of independently controlled, mobile robots, each of which has the abil-
ity to connect, disconnect, and move around adjacent robts#tamorphiaobotic systems [3], a subset of self-reconfigurable
systems, have the following additional requirements:

« Each module (robot) is required to be identical in structure, motion constraints, and computing capabilities.

« Modules have a regular symmetry so that they can densely pack the plane to form two and three dimensional solid lattices.

« Modules are not independently mobile. They require a substrate lattice in order to achieve locomotion.

Shape changing in these composite systems is envisioned as a means to accomplish various tasks, such as structural support
or tumor excision [8], as well as being useful in environments not amenable to direct human observation and control (e.g.,
interplanetary space, deep oceanic environments). The complete interchangeability of the robots provides a high degree of
system fault tolerance, allowing the potential for system “self-repair” [7].

The motion planning problem for a self-reconfigurable robotic system is to determine a sequence of robot motions required
to change the shape of the system from a given initial configurafipio @ desired goal configuratiotry.

We focus on a system composed of planar, hexagonal robotic modules as described by Chirikjian [4]. Our strategy for motion
planning begins with a centralized planning phase. The actual reconfiguration is distributed and relies on the assumption of
global knowledge of the coordinates of cellsGh local contact information at the modules, and thas a straight chain
configuration that intersects. We have previously applied this approach to the problem of reconfiguring a straight chain to

Kamunyori supported by Vassar College and the CRA-W Distributed Mentorship Program.

an intersecting straight chain [13] or to a goal configuration that satisfies a general “admissibility” condition [12]. In [11], we
presented algorithms and heuristics to chamdmissible substrate patifier module traversal that result in fast reconfiguration.
Informally, an admissible substrate path is a sequence of contiguous cells that span the goal configuration in an east to west
direction. This path forms a barrier between goal cells to the north and south, allowing efficient module traversal without
collision or deadlock. In [10] we presented a definition of directionally-oriemteéihissible traversal surfacesalong with
algorithms to plan and perform reconfiguration when a simple obstacle (i.e., one with no indentations or “pockets” in its
surface) is embedded @.

We presented and analyzed algorithms to fill a single obstacle pocket in [9], and algorithms to find and fill multiple obstacle
pockets in [14].

The problem we address in this paper is completely enveloping multiple simple obstacles within the goal environment. This
problem builds on our previous work by using algorithms previously developed to accomplish this. The multiple obstacles
problem is more complex than the single obstacle problem because the obstacles must be grouped together in such a way that
they form a single mass within the goal over which modules can traverse during goal-filling. Within this paper, we present
algorithms to determine how many obstacles are embeddéq] and then to bridge the obstacles together to form a single
large, complex obstacle. We then treat the composite obstacle like a multi-pocket obstacle, using the techniques presented in
[14] to fill the pockets.

A. Related work

The problem of enveloping obstacles in the goal environment with metamorphic robots has been addressed by some re-
searchers. Chirikjian [3], for example, proposed a heuristic to attract deformable hexagonal modules to an obstacle in the goal
configuration, causing the modules to converge around the obstacle as part of a centralized reconfiguration strategy. Bojinov
et al. [1] provide a distributed strategy for grasping objects in the environment using rigid rhombic dodecahedral modules by
probabilistically “growing” extensions to envelop the obstacle.

Other work addresses the locomotion of metamorphic robots over irregular traversal surfaces with “hills” or stair-like struc-
tures. Butler et al. [2] present a rule set for distributed locomotion of layers of deformable cubic modules over obstacles on the
traversal surface. Hosokawa et al. [5] consider obstacles that form a surface such as a stairway to be traversed by rigid square

modules.

B. Our approach and problem definition

Our overall objective is to design a distributed algorithm that will cause the modules to move from an initial straight chain
configuration,/, in the plane to a known goal configurati@r, This algorithm should ensure that modules do not collide with
each other, and the reconfiguration should be accomplished in a minimal number of rounds.

In this paper, we consider how to perform reconfiguration when the goal environment envelops multiple obstacles that do not
have pockets in their surfaces, and that do not form narrow corridors or isolated areas when grouped together. An obstacle is
a sequence of one or more "forbidden” cells that modules cannot enter. The goal environment has the following admissibility
constraints:

- There is a minimum of two cells between the obstacles contained within it,

- The goal is "simple,” i.e. it has no pockets or indentations, and

- There exists a shortest path between obstacles that does not go outside the goal
In Section Il we describe the system assumptions. Section Il gives an overview of our earlier work, and Section 1V describes
how that work is extended to accomplish the more complex problem of enveloping multiple obstacles. We present results of
successful envelopments of multiple obstacles in simulation experiments in Section V. Finally, Section VI provides a discussion

of our results and future work.

1. SYSTEM MODEL
The plane is partitioned into equal-sized hexagonal cells and labeled using the same coordinate system as described by
Chirikjian [3].
A. Assumptions about the modules

- Each module is identical in computing capability and runs the same program.
- Each module is a hexagon of the same size as the cells of the plane and always occupies exactly one of the cells.
- Each module knows at all times:
e its location (the coordinates of the cell that it currently occupies),
e its orientation (which edge is facing in which direction), and
e which of its neighboring cells is occupied by another module.
Modules move according to the following rules.
1) Modules move in lockstep rounds.
2) Inaround, a modul@/ is capable of moving to an adjacent céll,, iff (cf. Fig. 1)
(a) cellsC; andC; are currently empty and
(b) moduleM has a neighbof§ that does not move in the round (called ubstratg¢ and.S is also adjacent to cedl’.
3) Only one module tries to move into a particular cell in each round.
4) Modules cannot carry, push, or pull other modules, i.e., a module is only allowed to move itself.
5) Modules are deformable and move by a combination of rotation and changing joint angles.

6) Moving modules never come into contact during a round.

Beforemodule M moves After module M moves

A S—

Q Occupied cell

£ Unoccupied cell
(Numbersin cell M indicate initial and final orientation)

Fig. 1. Before and after module movemeftis substrate module and is moving module. Numbers if/ depict orientation of\/ before and after move.

[1l. RECONFIGURATION PLANNING OVERVIEW
Motion constraints on the robots dictate the necessity of having at least two contiguous free sides facing the direction the
robot will rotate. Another constraint on movement is imposed by our distributed algorithm, which forbids modules from moving

if they determine locally that a move may partition the configuration.

Fig. 2 shows the contact patterns of modules thafraeto move, those that atdockedfrom moving by motion constraints,
and those that may caupartitioning of the system.

BLOCKED FREE PARTITIONING

y
(L
Q@

RSB
RGeS

Indicates non—contact edge

\47
?\4— Indicates contact edge
Fig. 2. Contact patterns for modules and pocket cells.

Our results in [13] and [10] show that maximum concurrency without deadlock can be ensured if moving modules are
separated by two empty cells while moving over a surface that satisfies the properties of an admissible traversal surface.
Informally, a north-facing (south-facing) traversal surfacedast-monotone admissilife

« modules will move exclusively from west to east over the surface,

« every clockwise (CW) or counter-clockwise (CCW) rotation is in a non-westerly direction, and

« modules separated by two empty cells can move over the surface without creating a deadlocked configuration.

Deadlock avoidance in our algorithm requires that vertical columns in the traversal surface that are traversed on the east side
are separated from vertical columns that are traversed on the west side by at least three empty cells. We showed in [12] that our
algorithm for reconfiguration will successfully fill any goal configuration that contains an east-monotone admissible traversal

surface, also known as aamissible substrate path

A. Reconfiguration planning with one obstaclein

An obstacle is a sequence of one or more “forbidden cells” that modules cannot enter. We consider obstacles that are
composed of hexagons of the same size as the cells of the plane and we assume each hexagon in the obstacle occupies exactly
one of the cells in the plane. Any indentation or “pocket” in the obstacle surface is assumed to contain goal cells. Informally,
any goal cell found on a straight-line path between the center points of non-adjacent obstaclgamedls;, such that the
straight-line path is normal to one side of bethando; and passes through only non-obstacle cells, besidaado;, is a

pocket cellcf. Fig. 3). Pocket cells that are adjacent to hon-pocket goal cells are said to be on the pocket opening.

{ Obstacle cell
s Pocket cell

Fig. 3. Pocket cells within obstacle. Arrows point to pocket opening cells.

If the obstacle pocket contains only cells witbe contact patterns we call the obstaatimissible Thefree contact patterns
in Fig. 2 represent non-occupied pocket cells with a sufficient number of contiguous non-occupied sides to allow module entry
without partitioning the pocket. Inadmissible obstacles have pockets that contain cells with blocked or partitioning contact
patterns or have pockets that are contained completely within the obstacle. It is noteworthy thatthve sesme contact
patterns during reconfiguration to locally distinguish a movable module as are used in the planning stages to determine whether
an obstacle pocket can be filled
Our method of enveloping an obstacle containing a single pockgtraqguires the following planning steps:
(8) Choose an admissible substrate path that links the westmost coluhto dhe westmost obstacle column.
(b) Based on the choice of substrate path from part (a), choose a cell in the westmost coltraa af intersection point
for the straight chain of modules ihand position/ so that it is collinear with the substrate path.
(c) Determine the order in which modules will fill the obstacle pocket.
(d) If the obstacle/pocket mass has any east-facing vertical sections after the coordinates have been ordered, determine the
coordinates of goal cells that will be filled by modules to extend the obstacle so that it tapers gradually to the east.
(e) Choose an admissible substrate path that links the eastmost column of the extended obstacle to the eastmost:column of
if necessary.
(f Determine the order to fill cells to the north and south of the substrate path/obstacle mass in vertical columns from east
to west.

The above planning steps were the subject of [11], [12], [10] and [9].

B. Filling multiple obstacle pockets

The formal algorithms for filling multiple pockets in an obstacle were presented in [14]. Therefore we will only give a brief,
informal description in this paper. As in the single pocket case, each pocket cell in an admissible obstacle with multiple pockets
must have a free contact pattern (cf. Fig. 2). To fill multiple obstacle pockets, the pockets are counted, and then the order in
which pockets should be filled is determined, as well as the direction in which modules filling each pocket should be traveling.

Fig. 4 shows the order in which the cells in a triple-pocket obstacle are filled by our algorithm when modules choose a

rotation direction (CW or CCW), depending on the shortest distance over the obstacle surface.

Fig. 4. Obstacle with pocket cells numbered in the order they would be filled by modules sequentially filling pockets.

In [14] we also presented algorithms to fill pockets concurrently, but we will not be dealing with that in this paper.

IV. RECONFIGURATIONPLANNING FOR ENVELOPING MULTIPLE OBSTACLES

The approach to enveloping multiple obstacles within a goal environment involves finding the shortest-distance paths between
obstacles and using these to form "bridges” between the obstacles, creating a composite obstacle. The obstacles must be simple
(i.e. no pockets), and must meet the two-cell clearance condition. The composite obstacle is then treated as a multi-pocket
obstacle, using pocket-filling technigues to envelop it.

Our method for enveloping multiple obstacles is as follows:

1) Count the number of obstacles within the goal environment.

2) Order the obstacles lexicographically from north-west to south-east. The purpose of ordering is to ensure that obstacles

are dealt with from west to east of the goal.

3) Build the shortest substrate path from the west end of the goal to the first obstacle in the ordering, i.e. the obstacle that is

furthest north-west in the goal. This first obstacle becomes the initial composite obstacle.

4) Find and save the shortest distance path between any obstacle in the composite and the next obstacle in the goal, and then

add this obstacle to the composite. Repeat for as many obstacles as there are in the goal.

5) The obstacles and the shortest distance paths between them now form a large, composite obstacle. Treat this obstacle as

a single obstacle with multiple pockets, using previously developed techniques.

Fig. 5 shows an initial configuration in which three obstacles are embedded in the goal environment.

Fig. 5. Three obstacles contained within a goal environment, beforeNkielEPM ULTIPLEOBSTACLESalgorithm is run.

A. Counting Obstacles

The obstacles within the goal are counted using the algoritbuNI OBSTACLESIN Fig. 6. The algorithm uses breadth-first
search to group obstacle cells together into their respective obstacles, retaining only the perimeter cells of these obstacles and

discarding the inner cells. Initially, all obstacle cells are in veotmstacleCellsand vector of vectoaobstacleis empty.

B. Ordering Obstacles

The algorithm GRDEROBSTACLES in Fig. 7 sorts the cells in each obstacle lexicographically by thaioordinates, and
then sorts the obstacles by theirandy-coordinates. At end, obstacles are ordered from north-west to south-east. Obstacles

are in the vector of vecto@bstacle

C. Finding Lattice Distance

The lattice distance between two cells in the plane is found using the Manhattan (also known as 'Taxicab’) metric for finding

distance within a grid. The algorithmIBTANCE in Fig. 8 finds the lattice distance between 2 cells, using this metric, given

Algorithm COUNTOBSTACLES

1. i:= 0

2. While (obstacleCellsis not empty)

3 x := obstacleCellgl)

4 1++

5. remove z from obstacleCells

6 Q.enqueugr)

7 While (Q is not empty)

8 u := Q.dequeu@

9. For each neighbor v of w:v € obstacleCells

10. Q.enqueug)

11. remove v from obstacleCells

12. End for

13. If w« has one or more free sides
add u to obstaclé:)

14. End while

15. End while

Fig. 6. Pseudocode for Algorithmd@NTOBSTACLES

Algorithm ORDEROBSTACLEY obstaclg
1. For every i in obstacléi)
Sort obstacl€) by z-coordinates in ascending order

Let =z(i) := lowest z-coordinate in obstaclgi)
End for
Sort obstacleby =z(i) values in ascending order
(where 4= 1,2... size of obstacl¢
4. For every group of obstacle cells with equal (i)

Sort by y-coordinates in ascending order
5. End for

Fig. 7. Pseudocode for Algorithmr®»EROBSTACLES

their z- and y-coordinates. The Manhattan metric is tailored for square grids, so it is modified slightly in our algorithm to
account for the fact that we are dealing with a hexagonal grid. Unlike a square grid, within which any two non-parallel straight
lines that begin in the center of, and are normal to the sides of, the cells of the grid meet at a right angle, such lines would meet
at either an acute or obtuse angle in a hexagonal grid.

Let 2 andy be two cells within the hexagonal grid. Consider a straight line, starting at the center poiahdfnormal to
one side of the cell in either the north-east or south-east direction. Another straight line starting at the centerypaiat of
normal to one side of the cell in either the north or south direction will intersect with the first one at a cell in the same column
asy. Let this cell bez. The algorithm works by finding and determining the angle formed by a path freno y throughz.
For every acute-angle path betweeandy, there is a shorter obtuse-angle or straight-line path. This shorter path is always
of the same distance as that betweeandz. This is due to the numbering convention of the hexagonal grid, which must be

accounted for when finding lattice distance.

Algorithm DISTANCE(a, b)

1. z1 := x-coordinate of a; x2 = X-coordinate of b
yl := y-coordinate of a; y2 := y-coordinate of b
2. If cell b is north or south of cell a
3. dist = y2 - yl -1
4. Else if b is east of a
5. dist = x2 - x1 - 1
6. Else if b is north-east of a or b is south-east of a
7. Find the intersecting cell that is straight NE or SE (as appropriate) of a
and straight north or south of b. ycoord := y-coordinate of intersecting cell

8. If b is in the adjacent column to a

dist = ycoord - y2
10. Else if intersecting cell is cell b
11. dist = x2 - x1 - 1
12. Else if the angle formed is acute
13. dist = 22 - x1 - 1
14. Else if the angle formed is obtuse
15. If b is north-east of a
16. dist = (22 - zl1) + (ycoord - y2 - 1)
17. Else if b is south-east of a
18. dist == (22 - z1) + (y2 - ycoord - 1)

Fig. 8. Pseudocode for AlgorithmIBTANCE.

D. Finding Paths

Once the shortest lattice distance between two obstacles in the goal is found, a path corresponding to this distance is found.
Paths between the obstacles in the goal are found using the algonittP4THs in Fig. 10. This algorithm works by adding
all cells on the straight line frorell1 to theintersecting cell to the path. If the angle formed betweei1 andceli2 through
theintersecting cell is obtuse, all cells in the straight line between théersecting cell andcell2 are added to the path.
However, if the angle formed is acute, anothetersecting cell, which forms an obtuse angle withl/2, is found and all cells
from cell1 to this cell, and then teell2 are added to the path. It is necessary to avoid acute angles in the path in order to avoid
cell blockages during module movement.

Fig. 9 shows the paths found between the three obstacles in Fig. 5 after runningtieaFHs algorithm.

Fig. 9. Obstacles from Fig. 5, with paths between the obstacles to form a composite obstacle as found by alpaifamrHs.

Algorithm FINDPATHS(celll, cell2, intersect)

1. If cell2 is east of celll

2 Add all cells in straight horizontal line from celll and cell2 to path
3. Else if cell2 is north or south of celll

4 Add all cells in straight vertical line from celll and cell2 to path

5. Else if cell2 is north-east or south-east of celll

6 Add all cells in straight diagonal line from celll to intersect to path
7 If angle is obtuse

8 Add all cells in straight vertical line from intersect t0 cell2 t0 path
9 Else if angle is acute

10. Backtrack to find new intersect that forms and obtuse angle

11. Add all cells in straight diagonal line from intersect t0 cell2 t0 path

Fig. 10. Pseudocode for Algorithm§b PATHS.

V. SIMULATION RESULTS

We developed an object-oriented discrete event simulator to test the performance of our multi-obstacle enveloping algorithm
on a number of different obstacles embedde@'irFor every admissible goal environment tested, all obstacles were enveloped

successfully.

VI. CONCLUSIONS ANDFUTURE WORK

We have presented algorithms to plan reconfiguration of a system of hexagonal metamorphic robots when multiple simple
obstacles are embedded in the goal environment. The algorithms in this paper build on and extend our earlier work by increasing
the set of obstacles that can be completely enveloped during reconfiguration.

Our future work involves enveloping complex obstacles, thereby relaxing the restriction that all obstacles be simple.

REFERENCES

[1] H. Bojinov, A. Casal, and T. Hoag. “Emergent structures in modulular self-reconfigurable robo®rbodnof IEEE Intl. Conf. on Robotics and Automatiol. 2, pages
1734-1741, 2000.
[2] Z.Butler, K. Kotay, D. Rus, and K. Tomita. “Generic decentralized control for a class of self-reconfigurable rob&mt.lof IEEE Intl. Conf. on Robotics and Automation
pages 809-816, May 2002.
[3] G. Chirikjian. “Kinematics of a metamorphic robotic system.”Rroc. of IEEE Intl. Conf. on Robotics and Automatipages 449-455, 1994.
[4] G. Chirikjian, A. Pamecha, and I. Ebert-Uphoff. “Evaluating efficiency of self-reconfiguration in a class of modular rdbatsal of Robotic System¥ol. 13, No. 5, pages
317-338, May 1996.
[5] K. Hosokawa, T. Tsujimori, T. Fujii, H. Kaetsu, H. Asama, Y. Kuroda, and |. Endo. “Self-organizing collective robots with morphogenesis in a vertical plER&”Iil.
Conf. on Robotics and Automatigmages 2858—-2863, May 1998.
[6] K. Kotay and D. Rus. “Motion synthesis for the self-reconfiguring moleculeIEIBE Intl. Conf. on Robotics and Automatjgrages 843—-851, 1998.
[7] S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa, K. Tomita, and S. Kokaji. “M-TRAN: Self-reconfigurable modular robotic syii&B/ASME Trans. on Mechatronics
Vol. 7, No. 4, pages 431-441, 2002.
[8] A.Pamecha, I. Ebert-Uphoff, and G. Chirikjian. “Useful metrics for modular robot motion planniBg&E Transactions on Robotics and Automafit8(4):531-545, 1997.
[9] J. Walter, M. Brooks, and N. Amato. “Filling an obstacle pocket with hexagonal metamorphic robots.” Submitted Sept. 2003.
[10] J. Walter, B. Tsai, and N. Amato. “Enveloping obstacles with hexagonal metamorphic robotrodnof the IEEE Intl. Conf. on Robotics and Automatitm appear,
Sept. 2003.
[11] J. Walter, B. Tsai, and N. Amato. “Choosing good paths for fast distributed reconfiguration of hexagonal metamorphic roBats.” diithe IEEE Intl. Conf. on Robotics
and Automationpages 102-109, May 2002.
[12] J. Walter, J. Welch, and N. Amato. “Concurrent metamorphosis of hexagonal robot chains into simple connected configuiaE&n3ransactions on Robotics and
Automation \Vol. 18, No. 6, pages 945-956, 2002.

[13] J. Walter, J. Welch, and N. Amato. “Distributed reconfiguration of metamorphic robot chairadé¢nof ACM Symp. on Principles of Distributed Computipages 171-180,
2000.
[14] J. Walter, M. Brooks, D. Little, N. Amato. "Enveloping Multi-Pocket Obstacles with Hexagonal Metamorphic Robots”

