
Enveloping Multiple Obstacles with Hexagonal Metamorphic Robots

Jennifer E. Walter Joy W. Kamunyori

Vassar College Vassar College

walter@cs.vassar.edu jokamunyori@vassar.edu

Abstract

The problem addressed is reconfiguration planning for a metamorphic robotic system composed of any number of hexagonal

robots when multiple simple obstacles are embedded in the goal environment. Simple obstacles are defined as obstacles that have

even surfaces with no pockets or indentations and that, as a group, form no narrow corridors or isolated areas.

We extend our earlier work on filling multiple pockets in an obstacle to the case where the goal may contain several simple

obstacles. In this paper, we present algorithms that determine how many obstacles are in the goal by logically grouping the obstacle

cells in the goal into distinct connected components, order them lexicographically from north-west to south-east, and then link

them by shortest path bridges to form one large obstacle with multiple pockets. We subsequently use techniques presented in our

earlier papers to envelop the composite obstacle.

Index Terms

Metamorphic robots, hexagonal robots, obstacle, pocket, distributed reconfiguration

I. I NTRODUCTION

A self-reconfigurable[6] robotic system is a collection of independently controlled, mobile robots, each of which has the abil-

ity to connect, disconnect, and move around adjacent robots.Metamorphicrobotic systems [3], a subset of self-reconfigurable

systems, have the following additional requirements:

• Each module (robot) is required to be identical in structure, motion constraints, and computing capabilities.

• Modules have a regular symmetry so that they can densely pack the plane to form two and three dimensional solid lattices.

• Modules are not independently mobile. They require a substrate lattice in order to achieve locomotion.

Shape changing in these composite systems is envisioned as a means to accomplish various tasks, such as structural support

or tumor excision [8], as well as being useful in environments not amenable to direct human observation and control (e.g.,

interplanetary space, deep oceanic environments). The complete interchangeability of the robots provides a high degree of

system fault tolerance, allowing the potential for system “self-repair” [7].

The motion planning problem for a self-reconfigurable robotic system is to determine a sequence of robot motions required

to change the shape of the system from a given initial configuration (I) to a desired goal configuration (G).

We focus on a system composed of planar, hexagonal robotic modules as described by Chirikjian [4]. Our strategy for motion

planning begins with a centralized planning phase. The actual reconfiguration is distributed and relies on the assumption of

global knowledge of the coordinates of cells inG, local contact information at the modules, and thatI is a straight chain

configuration that intersectsG. We have previously applied this approach to the problem of reconfiguring a straight chain to

Kamunyori supported by Vassar College and the CRA-W Distributed Mentorship Program.

an intersecting straight chain [13] or to a goal configuration that satisfies a general “admissibility” condition [12]. In [11], we

presented algorithms and heuristics to chooseadmissible substrate pathsfor module traversal that result in fast reconfiguration.

Informally, an admissible substrate path is a sequence of contiguous cells that span the goal configuration in an east to west

direction. This path forms a barrier between goal cells to the north and south, allowing efficient module traversal without

collision or deadlock. In [10] we presented a definition of directionally-orientedadmissible traversal surfaces, along with

algorithms to plan and perform reconfiguration when a simple obstacle (i.e., one with no indentations or “pockets” in its

surface) is embedded inG.

We presented and analyzed algorithms to fill a single obstacle pocket in [9], and algorithms to find and fill multiple obstacle

pockets in [14].

The problem we address in this paper is completely enveloping multiple simple obstacles within the goal environment. This

problem builds on our previous work by using algorithms previously developed to accomplish this. The multiple obstacles

problem is more complex than the single obstacle problem because the obstacles must be grouped together in such a way that

they form a single mass within the goal over which modules can traverse during goal-filling. Within this paper, we present

algorithms to determine how many obstacles are embedded inG, and then to bridge the obstacles together to form a single

large, complex obstacle. We then treat the composite obstacle like a multi-pocket obstacle, using the techniques presented in

[14] to fill the pockets.

A. Related work

The problem of enveloping obstacles in the goal environment with metamorphic robots has been addressed by some re-

searchers. Chirikjian [3], for example, proposed a heuristic to attract deformable hexagonal modules to an obstacle in the goal

configuration, causing the modules to converge around the obstacle as part of a centralized reconfiguration strategy. Bojinov

et al. [1] provide a distributed strategy for grasping objects in the environment using rigid rhombic dodecahedral modules by

probabilistically “growing” extensions to envelop the obstacle.

Other work addresses the locomotion of metamorphic robots over irregular traversal surfaces with “hills” or stair-like struc-

tures. Butler et al. [2] present a rule set for distributed locomotion of layers of deformable cubic modules over obstacles on the

traversal surface. Hosokawa et al. [5] consider obstacles that form a surface such as a stairway to be traversed by rigid square

modules.

B. Our approach and problem definition

Our overall objective is to design a distributed algorithm that will cause the modules to move from an initial straight chain

configuration,I, in the plane to a known goal configuration,G. This algorithm should ensure that modules do not collide with

each other, and the reconfiguration should be accomplished in a minimal number of rounds.

In this paper, we consider how to perform reconfiguration when the goal environment envelops multiple obstacles that do not

have pockets in their surfaces, and that do not form narrow corridors or isolated areas when grouped together. An obstacle is

a sequence of one or more ”forbidden” cells that modules cannot enter. The goal environment has the following admissibility

constraints:

- There is a minimum of two cells between the obstacles contained within it,

- The goal is ”simple,” i.e. it has no pockets or indentations, and

- There exists a shortest path between obstacles that does not go outside the goal

In Section II we describe the system assumptions. Section III gives an overview of our earlier work, and Section IV describes

how that work is extended to accomplish the more complex problem of enveloping multiple obstacles. We present results of

successful envelopments of multiple obstacles in simulation experiments in Section V. Finally, Section VI provides a discussion

of our results and future work.

II. SYSTEM MODEL

The plane is partitioned into equal-sized hexagonal cells and labeled using the same coordinate system as described by

Chirikjian [3].

A. Assumptions about the modules

- Each module is identical in computing capability and runs the same program.

- Each module is a hexagon of the same size as the cells of the plane and always occupies exactly one of the cells.

- Each module knows at all times:

• its location (the coordinates of the cell that it currently occupies),

• its orientation (which edge is facing in which direction), and

• which of its neighboring cells is occupied by another module.

Modules move according to the following rules.

1) Modules move in lockstep rounds.

2) In a round, a moduleM is capable of moving to an adjacent cell,C1, iff (cf. Fig. 1)

(a) cellsC1 andC2 are currently empty and

(b) moduleM has a neighborS that does not move in the round (called thesubstrate) andS is also adjacent to cellC1.

3) Only one module tries to move into a particular cell in each round.

4) Modules cannot carry, push, or pull other modules, i.e., a module is only allowed to move itself.

5) Modules are deformable and move by a combination of rotation and changing joint angles.

6) Moving modules never come into contact during a round.

Occupied cell
Unoccupied cell

Before module M moves After module M moves

(Numbers in cell M indicate initial and final orientation)

C2 C2

M

S

C1

2

5 1

4
3 M

S

C3
3 5

62

4

6

1

Fig. 1. Before and after module movement.S is substrate module andM is moving module. Numbers inM depict orientation ofM before and after move.

III. R ECONFIGURATION PLANNING OVERVIEW

Motion constraints on the robots dictate the necessity of having at least two contiguous free sides facing the direction the

robot will rotate. Another constraint on movement is imposed by our distributed algorithm, which forbids modules from moving

if they determine locally that a move may partition the configuration.

Fig. 2 shows the contact patterns of modules that arefreeto move, those that areblockedfrom moving by motion constraints,

and those that may causepartitioningof the system.

 Indicates non−contact edge

 Indicates contact edge

PARTITIONINGBLOCKED FREE

Fig. 2. Contact patterns for modules and pocket cells.

Our results in [13] and [10] show that maximum concurrency without deadlock can be ensured if moving modules are

separated by two empty cells while moving over a surface that satisfies the properties of an admissible traversal surface.

Informally, a north-facing (south-facing) traversal surface iseast-monotone admissibleif

• modules will move exclusively from west to east over the surface,

• every clockwise (CW) or counter-clockwise (CCW) rotation is in a non-westerly direction, and

• modules separated by two empty cells can move over the surface without creating a deadlocked configuration.

Deadlock avoidance in our algorithm requires that vertical columns in the traversal surface that are traversed on the east side

are separated from vertical columns that are traversed on the west side by at least three empty cells. We showed in [12] that our

algorithm for reconfiguration will successfully fill any goal configuration that contains an east-monotone admissible traversal

surface, also known as anadmissible substrate path.

A. Reconfiguration planning with one obstacle inG

An obstacle is a sequence of one or more “forbidden cells” that modules cannot enter. We consider obstacles that are

composed of hexagons of the same size as the cells of the plane and we assume each hexagon in the obstacle occupies exactly

one of the cells in the plane. Any indentation or “pocket” in the obstacle surface is assumed to contain goal cells. Informally,

any goal cell found on a straight-line path between the center points of non-adjacent obstacle cellsoi andoj , such that the

straight-line path is normal to one side of bothoi andoj and passes through only non-obstacle cells, besidesoi andoj , is a

pocket cell(cf. Fig. 3). Pocket cells that are adjacent to non-pocket goal cells are said to be on the pocket opening.

Pocket cell
Obstacle cell

Fig. 3. Pocket cells within obstacle. Arrows point to pocket opening cells.

If the obstacle pocket contains only cells withfreecontact patterns we call the obstacleadmissible. Thefreecontact patterns

in Fig. 2 represent non-occupied pocket cells with a sufficient number of contiguous non-occupied sides to allow module entry

without partitioning the pocket. Inadmissible obstacles have pockets that contain cells with blocked or partitioning contact

patterns or have pockets that are contained completely within the obstacle. It is noteworthy that we usethe same contact

patterns during reconfiguration to locally distinguish a movable module as are used in the planning stages to determine whether

an obstacle pocket can be filled.

Our method of enveloping an obstacle containing a single pocket inG requires the following planning steps:

(a) Choose an admissible substrate path that links the westmost column ofG to the westmost obstacle column.

(b) Based on the choice of substrate path from part (a), choose a cell in the westmost column ofG as an intersection point

for the straight chain of modules inI and positionI so that it is collinear with the substrate path.

(c) Determine the order in which modules will fill the obstacle pocket.

(d) If the obstacle/pocket mass has any east-facing vertical sections after the coordinates have been ordered, determine the

coordinates of goal cells that will be filled by modules to extend the obstacle so that it tapers gradually to the east.

(e) Choose an admissible substrate path that links the eastmost column of the extended obstacle to the eastmost column ofG

if necessary.

(f) Determine the order to fill cells to the north and south of the substrate path/obstacle mass in vertical columns from east

to west.

The above planning steps were the subject of [11], [12], [10] and [9].

B. Filling multiple obstacle pockets

The formal algorithms for filling multiple pockets in an obstacle were presented in [14]. Therefore we will only give a brief,

informal description in this paper. As in the single pocket case, each pocket cell in an admissible obstacle with multiple pockets

must have a free contact pattern (cf. Fig. 2). To fill multiple obstacle pockets, the pockets are counted, and then the order in

which pockets should be filled is determined, as well as the direction in which modules filling each pocket should be traveling.

Fig. 4 shows the order in which the cells in a triple-pocket obstacle are filled by our algorithm when modules choose a

rotation direction (CW or CCW), depending on the shortest distance over the obstacle surface.

8
9

10
11

12

7

131
14

15

16
2

3
5

46

S

Fig. 4. Obstacle with pocket cells numbered in the order they would be filled by modules sequentially filling pockets.

In [14] we also presented algorithms to fill pockets concurrently, but we will not be dealing with that in this paper.

IV. RECONFIGURATIONPLANNING FOR ENVELOPING MULTIPLE OBSTACLES

The approach to enveloping multiple obstacles within a goal environment involves finding the shortest-distance paths between

obstacles and using these to form ”bridges” between the obstacles, creating a composite obstacle. The obstacles must be simple

(i.e. no pockets), and must meet the two-cell clearance condition. The composite obstacle is then treated as a multi-pocket

obstacle, using pocket-filling techniques to envelop it.

Our method for enveloping multiple obstacles is as follows:

1) Count the number of obstacles within the goal environment.

2) Order the obstacles lexicographically from north-west to south-east. The purpose of ordering is to ensure that obstacles

are dealt with from west to east of the goal.

3) Build the shortest substrate path from the west end of the goal to the first obstacle in the ordering, i.e. the obstacle that is

furthest north-west in the goal. This first obstacle becomes the initial composite obstacle.

4) Find and save the shortest distance path between any obstacle in the composite and the next obstacle in the goal, and then

add this obstacle to the composite. Repeat for as many obstacles as there are in the goal.

5) The obstacles and the shortest distance paths between them now form a large, composite obstacle. Treat this obstacle as

a single obstacle with multiple pockets, using previously developed techniques.

Fig. 5 shows an initial configuration in which three obstacles are embedded in the goal environment.

Fig. 5. Three obstacles contained within a goal environment, before the ENVELOPMULTIPLEOBSTACLESalgorithm is run.

A. Counting Obstacles

The obstacles within the goal are counted using the algorithm COUNTOBSTACLES in Fig. 6. The algorithm uses breadth-first

search to group obstacle cells together into their respective obstacles, retaining only the perimeter cells of these obstacles and

discarding the inner cells. Initially, all obstacle cells are in vectorobstacleCells, and vector of vectorsobstacleis empty.

B. Ordering Obstacles

The algorithm ORDEROBSTACLES in Fig. 7 sorts the cells in each obstacle lexicographically by theirx-coordinates, and

then sorts the obstacles by theirx- andy-coordinates. At end, obstacles are ordered from north-west to south-east. Obstacles

are in the vector of vectorsobstacle.

C. Finding Lattice Distance

The lattice distance between two cells in the plane is found using the Manhattan (also known as ’Taxicab’) metric for finding

distance within a grid. The algorithm DISTANCE in Fig. 8 finds the lattice distance between 2 cells, using this metric, given

Algorithm COUNTOBSTACLES

1. i := 0

2. While (obstacleCellsis not empty)

3. x := obstacleCells(1)

4. i++

5. remove x from obstacleCells

6. Q.enqueue(x)

7. While (Q is not empty)

8. u := Q.dequeue()

9. For each neighbor v of u : v ∈ obstacleCells

10. Q.enqueue(v)

11. remove v from obstacleCells

12. End for

13. If u has one or more free sides

add u to obstacle(i)

14. End while

15. End while

Fig. 6. Pseudocode for Algorithm COUNTOBSTACLES.

Algorithm ORDEROBSTACLES(obstacle)

1. For every i in obstacle(i)

Sort obstacle(i) by x-coordinates in ascending order

Let x(i) := lowest x-coordinate in obstacle(i)

2. End for

3. Sort obstacle by x(i) values in ascending order

(where i:= 1,2... size of obstacle)

4. For every group of obstacle cells with equal x(i)

Sort by y-coordinates in ascending order

5. End for

Fig. 7. Pseudocode for Algorithm ORDEROBSTACLES.

their x- andy-coordinates. The Manhattan metric is tailored for square grids, so it is modified slightly in our algorithm to

account for the fact that we are dealing with a hexagonal grid. Unlike a square grid, within which any two non-parallel straight

lines that begin in the center of, and are normal to the sides of, the cells of the grid meet at a right angle, such lines would meet

at either an acute or obtuse angle in a hexagonal grid.

Let x andy be two cells within the hexagonal grid. Consider a straight line, starting at the center point ofx and normal to

one side of the cell in either the north-east or south-east direction. Another straight line starting at the center point ofy and

normal to one side of the cell in either the north or south direction will intersect with the first one at a cell in the same column

asy. Let this cell bez. The algorithm works by findingz and determining the angle formed by a path fromx to y throughz.

For every acute-angle path betweenx andy, there is a shorter obtuse-angle or straight-line path. This shorter path is always

of the same distance as that betweenx andz. This is due to the numbering convention of the hexagonal grid, which must be

accounted for when finding lattice distance.

Algorithm DISTANCE(a, b)

1. x1 := x-coordinate of a; x2 := x-coordinate of b

y1 := y-coordinate of a; y2 := y-coordinate of b

2. If cell b is north or south of cell a

3. dist := y2 - y1 - 1

4. Else if b is east of a

5. dist := x2 - x1 - 1

6. Else if b is north-east of a or b is south-east of a

7. Find the intersecting cell that is straight NE or SE (as appropriate) of a

and straight north or south of b. ycoord := y-coordinate of intersecting cell

8. If b is in the adjacent column to a

9. dist := ycoord - y2

10. Else if intersecting cell is cell b

11. dist := x2 - x1 - 1

12. Else if the angle formed is acute

13. dist := x2 - x1 - 1

14. Else if the angle formed is obtuse

15. If b is north-east of a

16. dist := (x2 - x1) + (ycoord - y2 - 1)

17. Else if b is south-east of a

18. dist := (x2 - x1) + (y2 - ycoord - 1)

Fig. 8. Pseudocode for Algorithm DISTANCE.

D. Finding Paths

Once the shortest lattice distance between two obstacles in the goal is found, a path corresponding to this distance is found.

Paths between the obstacles in the goal are found using the algorithm FINDPATHS in Fig. 10. This algorithm works by adding

all cells on the straight line fromcell1 to theintersecting cell to the path. If the angle formed betweencell1 andcell2 through

the intersecting cell is obtuse, all cells in the straight line between theintersecting cell andcell2 are added to the path.

However, if the angle formed is acute, anotherintersecting cell, which forms an obtuse angle withcell2, is found and all cells

from cell1 to this cell, and then tocell2 are added to the path. It is necessary to avoid acute angles in the path in order to avoid

cell blockages during module movement.

Fig. 9 shows the paths found between the three obstacles in Fig. 5 after running the FINDPATHS algorithm.

S

Fig. 9. Obstacles from Fig. 5, with paths between the obstacles to form a composite obstacle as found by algorithm FINDPATHS.

Algorithm FINDPATHS(cell1, cell2, intersect)

1. If cell2 is east of cell1

2. Add all cells in straight horizontal line from cell1 and cell2 to path

3. Else if cell2 is north or south of cell1

4. Add all cells in straight vertical line from cell1 and cell2 to path

5. Else if cell2 is north-east or south-east of cell1

6. Add all cells in straight diagonal line from cell1 to intersect to path

7. If angle is obtuse

8. Add all cells in straight vertical line from intersect to cell2 to path

9. Else if angle is acute

10. Backtrack to find new intersect that forms and obtuse angle

11. Add all cells in straight diagonal line from intersect to cell2 to path

Fig. 10. Pseudocode for Algorithm FINDPATHS.

V. SIMULATION RESULTS

We developed an object-oriented discrete event simulator to test the performance of our multi-obstacle enveloping algorithm

on a number of different obstacles embedded inG. For every admissible goal environment tested, all obstacles were enveloped

successfully.

VI. CONCLUSIONS ANDFUTURE WORK

We have presented algorithms to plan reconfiguration of a system of hexagonal metamorphic robots when multiple simple

obstacles are embedded in the goal environment. The algorithms in this paper build on and extend our earlier work by increasing

the set of obstacles that can be completely enveloped during reconfiguration.

Our future work involves enveloping complex obstacles, thereby relaxing the restriction that all obstacles be simple.

REFERENCES

[1] H. Bojinov, A. Casal, and T. Hoag. “Emergent structures in modulular self-reconfigurable robots.” InProc. of IEEE Intl. Conf. on Robotics and Automation, Vol. 2, pages

1734–1741, 2000.

[2] Z. Butler, K. Kotay, D. Rus, and K. Tomita. “Generic decentralized control for a class of self-reconfigurable robots.” InProc. of IEEE Intl. Conf. on Robotics and Automation,

pages 809–816, May 2002.

[3] G. Chirikjian. “Kinematics of a metamorphic robotic system.” InProc. of IEEE Intl. Conf. on Robotics and Automation, pages 449–455, 1994.

[4] G. Chirikjian, A. Pamecha, and I. Ebert-Uphoff. “Evaluating efficiency of self-reconfiguration in a class of modular robots.”Journal of Robotic Systems, Vol. 13, No. 5, pages

317–338, May 1996.

[5] K. Hosokawa, T. Tsujimori, T. Fujii, H. Kaetsu, H. Asama, Y. Kuroda, and I. Endo. “Self-organizing collective robots with morphogenesis in a vertical plane.” InIEEE Intl.

Conf. on Robotics and Automation, pages 2858–2863, May 1998.

[6] K. Kotay and D. Rus. “Motion synthesis for the self-reconfiguring molecule.” InIEEE Intl. Conf. on Robotics and Automation, pages 843–851, 1998.

[7] S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa, K. Tomita, and S. Kokaji. “M-TRAN: Self-reconfigurable modular robotic system.”IEEE/ASME Trans. on Mechatronics,

Vol. 7, No. 4, pages 431–441, 2002.

[8] A. Pamecha, I. Ebert-Uphoff, and G. Chirikjian. “Useful metrics for modular robot motion planning.”IEEE Transactions on Robotics and Automation, 13(4):531–545, 1997.

[9] J. Walter, M. Brooks, and N. Amato. “Filling an obstacle pocket with hexagonal metamorphic robots.” Submitted Sept. 2003.

[10] J. Walter, B. Tsai, and N. Amato. “Enveloping obstacles with hexagonal metamorphic robots.” InProc. of the IEEE Intl. Conf. on Robotics and Automation, to appear,

Sept. 2003.

[11] J. Walter, B. Tsai, and N. Amato. “Choosing good paths for fast distributed reconfiguration of hexagonal metamorphic robots.” InProc. of the IEEE Intl. Conf. on Robotics

and Automation, pages 102-109, May 2002.

[12] J. Walter, J. Welch, and N. Amato. “Concurrent metamorphosis of hexagonal robot chains into simple connected configurations.”IEEE Transactions on Robotics and

Automation, Vol. 18, No. 6, pages 945-956, 2002.

[13] J. Walter, J. Welch, and N. Amato. “Distributed reconfiguration of metamorphic robot chains.” InProc. of ACM Symp. on Principles of Distributed Computing, pages 171–180,

2000.

[14] J. Walter, M. Brooks, D. Little, N. Amato. ”Enveloping Multi-Pocket Obstacles with Hexagonal Metamorphic Robots”

