
A Place-and-Route Tool for Heterogeneous FPGAs
Laura Beck (lwb4@cornell.edu)

Contents:

Project Description:

Introduction:

Contributions:

Tasks in Progress:

Experimental Plan:

Mentorship Experience:

References:

2

2

5

6

8

9

11

 2

Project Description:

I have been modifying an FPGA placer/router tool called Versatile Placer/Router (VPR) [1] to

handle heterogeneous as well as homogeneous FPGA architectures. We want to experiment with

heterogeneous FPGAs with embedded hard macros such as processors or multipliers to

determine what FPGA routing channel structure allows for the greatest routability around these

hard macros.

Introduction:

A field programmable gate array (FPGA) is a programmable device that can implement many

different digital circuit designs. FPGAs contain four types of elements called: logic blocks,

routing channels, switch boxes, and IO pins, arranged as shown in Figure 1. The body of the

FPGA is a grid of logic blocks, colored green in Figure 1. The grid in Figure 1 is small for

LB LB LB

LB LB LB

LB LB LB

IO

IO

IO

IO

I
O

I
O

I
O

I
O

I
O

I
O

I
O

I
O

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

IO

IO

IO

IO

Figure 1. FPGA Structure

 3

clarity- the grids in most actual FPGAs contain many more logic blocks. The spaces between the

logic blocks are called routing channels, marked yellow for horizontal channels and pink for

vertical channels in Figure 1. Switch boxes appear wherever vertical and horizontal channels

intersect, and as with other chips, the FPGA is bordered by IO pins (shown in blue) allowing for

communication with the external world.

The structure and complexity of an FPGA’s logic blocks varies from device to device. However,

in look-up-table (LUT) based FPGAs, the type we are studying, logic blocks always contain at

least one LUT - which can be programmed to implement any Boolean function of some small

number of variables - and one flip-flop [2]. Thus, each logic block can be programmed to either

perform a small amount of logic, store a small amount of data, or sometimes both. The FPGA’s

vertical and horizontal routing channels are made up of banks of wires, through which signals

can travel between the logic blocks and between logic blocks and IO pins. Many vertical and

horizontal wires go into each of the FPGA’s switch boxes, and these switch boxes are

programmed to form only some of the many possible connections between these wires, causing

the signals in the FPGA to be routed to the correct places.

When working with an FPGA, one designs a large digital circuit, and then a software synthesis

tool breaks it down into pieces small enough to be implemented by single logic blocks. Then a

second computer-aided design (CAD) tool, called a placer/router, is needed to determine exactly

where on the FPGA each part of the design should be located. As the name implies, a

placer/router’s work has two stages: placement and routing. Placement determines exactly which

FPGA logic blocks should implement which logic-block sized pieces of the circuit design, and

routing decides how the FPGA’s switch boxes should be configured so that the circuit’s signals

will travel to the appropriate places through the FPGA’s channels. The placer tries to arrange the

logic blocks in a way that will minimize the distance signals in the circuit will have to travel. The

router tries to minimize the amount of wiring needed and the speed the final circuit will run at.

Routing is generally much more time-consuming than placement. My research involves

modifying the C-code for a placer/router tool called Versatile Place and Route (VPR) that was

developed at the University of Toronto [1].

 4

Most FPGAs look somewhat like Figure 1 in that all of their logic blocks have the same

structure, all of their routing channels are the same size, and basically their entire structure is

uniform. Such FPGAs are called homogeneous FPGAs. We are interested in studying

heterogeneous FPGAs – those in which some parts of the FPGA are different. Particularly, we

want to study FPGAs with embedded hard macros: non-reconfigurable hardware such as

processors and multipliers inserted somewhere in the FPGA [3]. An example of such a device is

the Xilinx Virtex II Pro FPGA, equipped with embedded memory blocks, a multiplier, and two

processors. Our goal is to determine whether non-uniform channel sizes would be useful in

FPGAs containing hard macros. We plan to investigate this by using VPR to place and route

circuits from the twenty circuit MCNC Benchmark Suite on FPGA architectures containing hard

macros with several different channel structures. The VPR program was not designed to work

with this type of heterogeneous FPGA, so I am currently modifying VPR to handle these

architectures.

A related study was conducted in 2001 by P. Hallschmid and S. Wilton [4]. Their study differs

from ours in that it focused on embedded memory blocks whereas we are considering general

hard macros, and their study used detailed routing, while we are using global routing. The

difference between detailed and global routing concerns switch boxes. The simplest (and most

expensive) type of switch box one could build would be capable of making a connection between

any two of the wires entering it. This requires more hardware than is found in actual switch

boxes – which usually are only able to form some of these connections. In detailed routing, one

gives specific information about the switch boxes of the FPGA being used to produce a route that

could be downloaded to an actual FPGA. In global routing, one assumes ideal switch boxes that

can form any possible connection. Global routing is good for experimenting with hypothetical

FPGA architectures that do not yet have any specific switch box structure. At this stage, we are

not concerned with switch behavior, so global routing is appropriate for our work.

 5

Contributions:

1) The first modification I made to VPR was

to allow a user to specify any channel in

the FPGA and determine what size that

channel would be, either in absolute units,

or relative to the size of a typical channel.

The relative size is useful because the size

of a typical channel is not usually known

before routing takes place. VPR performs

a binary search to determine the smallest

size for typical channels that will not

make routing impossible. Figure 2 shows

VPR’s display of an FPGA with some

channels wider than others. The gray

squares represent logic blocks and the

subdivided gray squares along the border

represent IO pins.

2) Next I integrated some code written by

a former student working with my

mentor into my modified version of

VPR. We wanted to represent a hard

macro as a rectangular group of logic

blocks that was assigned a specific

location by a user and never moved

from that spot by VPR. In normal

operation, VPR assumes all logic

blocks are identical FPGA resources

and its placing algorithm moves all of

the logic blocks around to find an

optimal arrangement. The former

Figure 2. VPR Display of an FPGA with
Two Very Wide Channels

Figure 3. VPR Display of an FPGA with
A Hard Macro at its Center

 6

student’s code allowed a user to specify logic blocks that would not be moved by VPR’s

placer. I integrated this portion of his code into my work rather than adding my

improvements to a copy of his code from the start because other parts of his code do not

work properly.

Figure 3 shows VPR’s representation of an FPGA containing a hard macro at its center.

Logic blocks within the hard macro are colored pink instead of gray. During placement,

one can observe the gray blocks moving

around and the pink blocks remaining

fixed in place.

3) I then changed VPR so that when a hard

macro is present, VPR will automatically

find the channels next to the hard macro

and make these channels twice as large as

a typical channel. The decision to make

them twice as large is arbitrary and easily

changed. This modification just makes it

easy to change all of these channels as a

group. Figure 4 shows VPR’s display of

an FPGA with a hard macro surrounded by

wide channels.

Tasks in Progress:

1) I am currently working on getting VPR’s router not to route any FPGA signals on the

channels in the middle of a hard macro. This modification is necessary because an FPGA

containing an actual embedded chip would not be able to route anything through this

chip. Figure 5 shows a zoomed-in VPR display of a circuit with that has been routed on

an FPGA with a hard macro. The paths through the FPGA’s channels that are being used

by some signal are drawn in, those connecting to the hard macro’s logic blocks in pink,

Figure 4. VPR Display of an FPGA with
a Hard Macro Surrounded by Wide

Channels

 7

and others in black. The problem is that currently VPR routes some of the black wires

(thickened for clarity in Figure 5) between the hard macro’s pink logic blocks.

2) Presently, only one hard macro can be

specified and recognized by VPR, and its

position is given in a header file so that

every time the hard macro’s size or

position is changed, VPR must be entirely

recompiled. I want to edit this so that hard

macros can be specified in an input file

and multiple hard macros can be present

within a single FPGA.

3) As shown in Figure 2, VPR’s graphical

interface displays a diagram of the FPGA

being used, and this display has been

modified to color logic blocks within a hard macro pink. The pink coloring does not

always show up when it should, and I would like to fix this if I have time.

Figure 5. VPR’s Current Routing Sends
Wires Through the Hard Macro – This

Needs to Change

 8

Figure 6, below, shows my entire plan for modifying VPR:

Experimental Plan:

When the modified version of VPR is usable, I will run VPR to place and route a group of

sample circuits on FPGAs with embedded hard macros, experimenting with the size of the

channels around these hard macros. A study conducted by the makers of VPR showed that for

homogeneous FPGAs it is optimal for all channels to be the same size [5]. My mentor and I

predict, however, that for heterogeneous FPGAs containing hard macros, the sample circuits will

be routable with a smaller typical channel size if the channels near the hard macro are larger than

typical channels. If this is true, I will try to determine how much larger than the typical channels

it is favorable for channels around hard macros to be.

Figure 6. VPR Modification Plan

Placer (But not Router) Can
Handle a Single Hard Macro

Arbitrary Channels Can Have
Any Desired Size

Hard Macro Automatically
Surrounded by Wide Channels

No FPGA Signals are Routed
Through the Hard Macro

Multiple Hard Macros Allowed

Minor Details Such as Color
Adjusted

 9

Mentorship Experience:

I have been working for my DMP mentorship for six weeks, and I have four weeks of work

remaining. My first three weeks were spent discussing possible projects with my mentor, Eli

Bozorgzadeh, reading background information and documentation for tools I would need,

installing software, getting computers set up and designing my DMP website. The next three

weeks were devoted to concentrated work on my research project itself, and preparing this

report.

The most exciting thing that has happened was the first accomplishment listed in the

contributions section. This was the first improvement I made to the piece of software I’m

working with and it took me a week to make it since I was not yet familiar with the code and I

tried several things that did not work before finding a good solution. It was very satisfying when

I got this working. Likewise, I would say working on this task has been my biggest challenge so

far.

I work in a room where about eight CE/CS graduate students have their cubicles. My mentor

wanted her DMP students to be near the graduate students so we could get a feel for their

working environment and experience and ask them questions. I think it was a good idea – I’ve

gotten some good advice about careers and graduate study from some of those students. I meet

with my mentor for a half hour every day to discuss how my project is going. I also update my

DMP website every night and Professor Bozorgzadeh checks it regularly. There are no other

students working on my project, however there are always other students around me.

My desk is next to that of another DMP student, Padmini Nagaraj, who is also working with my

mentor. It’s nice having someone my age nearby. There are essentially no undergraduates on

campus who do not live in Irvine and have cars so they can spend most of their time off campus.

I think being in Irvine for the summer would have been somewhat isolating if I had been the only

DMP student here, but because there are two of us, it has been fine.

I live in a single room (I try to get single rooms since I’m a very light sleeper compared to most

other college students) in a small dorm that’s a twenty-minute bike ride from the building where

 10

I work. This is the only college campus I’ve been on where the buildings aren’t walking distance

from each other. I was very surprised at this (and a little concerned) when I first got here, but I

was able to get an inexpensive bike at Target, and it’s actually been a lot of fun biking around

campus. My dorm is in a really beautiful location, and I haven’t had any problems with the

people there – as I mentioned before, most of them aren’t around very much, although they seem

nice.

 11

References:

[1] V. Betz and J. Rose, “VPR: A New Packing, Placement and Routing Tool for FPGA

Research,” International Workshop on Field Programmable Logic and Applications, 1997.

[2] J. Wakerly, Digital Design Principles and Practices, Prentice Hall, 2001.

[3] W. Wolf, FPGA-Based System Design, Prentice Hall, 2004.

[4] P. Hallschmid and S. Wilton, “Detailed Routing Architectures for Embedded

Programmable Logic IP Cores,” ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, Monterey CA, Feb. 2001, pp. 69-74.

[5] V. Betz and J. Rose, “Effect of the Prefabricated Routing Track Distribution on FPGA

Area-Efficiency,” IEEE Transactions on VLSI, Vol. 6, No. 3, Sept. 1998, pp. 445-456.

