
A Place-and-Route Tool for Heterogeneous FPGAs
Laura Beck (lwb4@cornell.edu)

Contents:

Project Description:

Introduction:

Contributions:

Experimental Results:

Possible Future Work:

Summary:

References:

2

2

5

11

18

19

21

 2

Project Description:

I have been modifying an FPGA placer/router tool called Versatile Placer/Router (VPR) [1] to

handle heterogeneous as well as homogeneous FPGA architectures. We want to experiment with

heterogeneous FPGAs with embedded hard macros such as processors or multipliers to

determine what FPGA routing channel structure allows for the greatest routability around these

hard macros.

Introduction:

A field programmable gate array (FPGA) is a programmable device that can implement many

different digital circuit designs. FPGAs contain four types of elements called: logic blocks,

routing channels, switch boxes, and IO pins, arranged as shown in Figure 1. The body of the

FPGA is a grid of logic blocks, colored green in Figure 1. The grid in Figure 1 is small for

LB LB LB

LB LB LB

LB LB LB

IO

IO

IO

IO

I
O

I
O

I
O

I
O

I
O

I
O

I
O

I
O

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

IO

IO

IO

IO

Figure 1. FPGA Structure

 3

clarity- the grids in most actual FPGAs contain many more logic blocks. The spaces between the

logic blocks are called routing channels, marked yellow for horizontal channels and pink for

vertical channels in Figure 1. Switch boxes appear wherever vertical and horizontal channels

intersect, and as with other chips, the FPGA is bordered by IO pins (shown in blue) allowing for

communication with the external world.

The structure and complexity of an FPGA’s logic blocks varies from device to device. However,

in look-up-table (LUT) based FPGAs, the type we are studying, logic blocks always contain at

least one LUT - which can be programmed to implement any Boolean function of some small

number of variables - and one flip-flop [2]. Thus, each logic block can be programmed to either

perform a small amount of logic, store a small amount of data, or sometimes both. The FPGA’s

vertical and horizontal routing channels are made up of banks of wires, through which signals

can travel between the logic blocks and between logic blocks and IO pins. Many vertical and

horizontal wires go into each of the FPGA’s switch boxes, and these switch boxes are

programmed to form only some of the many possible connections between these wires, causing

the signals in the FPGA to be routed to the correct places.

When working with an FPGA, one designs a large digital circuit, and then a software synthesis

tool breaks it down into pieces small enough to be implemented by single logic blocks. Then a

second computer-aided design (CAD) tool, called a placer/router, is needed to determine exactly

where on the FPGA each part of the design should be located. As the name implies, a

placer/router’s work has two stages: placement and routing. Placement determines exactly which

FPGA logic blocks should implement which logic-block sized pieces of the circuit design, and

routing decides how the FPGA’s switch boxes should be configured so that the circuit’s signals

will travel to the appropriate places through the FPGA’s channels. The placer tries to arrange the

logic blocks in a way that will minimize the distance signals in the circuit will have to travel. The

router tries to minimize the amount of wiring needed and the speed the final circuit will run at.

Routing is generally much more time-consuming than placement. My work involved modifying

the C-code for a placer/router tool called Versatile Place and Route (VPR) that was developed at

the University of Toronto [1].

 4

Most FPGAs look somewhat like Figure 1 in that all of their logic blocks have the same

structure, all of their routing channels are the same size, and basically their entire structure is

uniform. Such FPGAs are called homogeneous FPGAs. We are interested in studying

heterogeneous FPGAs – those in which some parts of the FPGA are different. Particularly, we

want to study FPGAs with embedded hard macros: non-reconfigurable hardware such as

processors and multipliers inserted somewhere in the FPGA [3]. An example of such a device is

the Xilinx Virtex II Pro FPGA, equipped with embedded memory blocks, a multiplier, and two

processors.

Our goal is to determine whether non-uniform channel sizes would be useful in FPGAs

containing hard macros. A study conducted by the makers of VPR showed that for homogeneous

FPGAs it is optimal for all channels to be the same size [4], however their study did not involve

any hard macros. We plan to conduct our investigation by using VPR to place and route circuits

from the twenty-circuit MCNC Benchmark Suite on FPGA architectures containing hard macros

with several different channel structures. The VPR program was not designed to work with this

type of heterogeneous FPGA, so I modified VPR to handle these architectures.

Another related study was conducted in 2001 by P. Hallschmid and S. Wilton [5]. Their study

differs from ours in that it focused on embedded memory blocks whereas we are considering

general hard macros, and their study used detailed routing, while we are using global routing.

The difference between detailed and global routing concerns switch boxes. The simplest (and

most expensive) type of switch box one could build would be capable of making a connection

between any two of the wires entering it. This requires more hardware than is found in actual

switch boxes – which usually are only able to form some of these connections. In detailed

routing, one gives specific information about the switch boxes of the FPGA being used to

produce a route that could be downloaded to an actual FPGA. In global routing, one assumes

ideal switch boxes that can form any possible connection. Global routing is good for

experimenting with hypothetical FPGA architectures that do not yet have any specific switch box

structure. At this stage, we are not concerned with switch behavior, so global routing is

appropriate for our work.

 5

Contributions:

1) The first modification I made to VPR was to

allow a user to specify any channel in the FPGA

and determine what size that channel would be,

either in absolute units, or relative to the size of

a typical channel. The relative size is useful

because the size of a typical channel is not

usually known before routing takes place. VPR

performs a binary search to determine the

smallest size for typical channels that will not

make routing impossible. Figure 2 shows VPR’s

display of an FPGA with some channels wider

than others. The gray squares represent logic

blocks and the subdivided gray squares along

the border represent IO pins.

2) Next I integrated some code written by a

former student working with my mentor into

my modified version of VPR. The MCNC

Benchmark circuits we are placing and

routing in our study do not contain any hard

macros – when we place and route a circuit,

we want to select a group of logic blocks

from that design to model a hard macro in

our experiment. The former student’s code

chooses logic blocks to represent the hard

macro, places them together in a square at

the FPGA’s center, and colors these blocks

and wires that connect to them pink in

VPR’s graphical user interface (GUI)

display (see Figure 3). His code ensures that

Figure 2. VPR Display of an FPGA with
Two Very Wide Channels

Figure 3. VPR Display of an FPGA with
A Hard Macro at its Center

 6

the blocks are chosen at random (i.e. not the blocks that happen to be adjacent after

placement) to ensure high connectivity to logic blocks that are not also in the hard macro. I

integrated this portion of his code into my copy of VPR rather than initially adding my

modifications to his version of the program because other sections of his code are incomplete

and do not work properly.

3) I then changed VPR so that when a hard macro is present, VPR will automatically find the

channels next to the hard macro and make these channels twice as large as a typical channel.

The decision to make them twice as large is

arbitrary and easily changed. This

modification just makes it easy to change all

of these channels as a group. Figure 4 shows

VPR’s display of an FPGA with a hard

macro surrounded by wide channels.

4) The next stage of my work – which was

planned but not completed by my mentor’s

former student – was to change VPR’s

routing behavior so that only pink wires,

wires that connect to a block inside the hard

macro are allowed to route through the

channels inside the fixed macro. This makes

our model hard macro similar to a real one, which would allow signals connecting to the hard

macro to enter it though its pins, but occupy a space containing no channels for other signals

to route through. Figure 5 shows a VPR routing display before and after this modification.

Wires that are not colored pink are drawn in black.

5) At this point in my work with VPR, there was an unexpected challenge. VPR had been

modified enough to run a preliminary experiment on ten of the twenty Benchmark circuits,

and in attempting to run these trials I discovered that VPR consistently failed to route the five

largest Benchmarks I was working with.

Figure 4. VPR Display of an FPGA with
a Hard Macro Surrounded by Wide

Channels

 7

Analysis of the problem showed that very large hard macros interfered with VPR’s routing

algorithm. Figure 6 shows an FPGA with yellow squares representing logic blocks. Consider

VPR attempting to route a connection between the two pink squares. The rectangle formed

with these squares as its corners, drawn in pink, is called the bounding-box of these two logic

blocks. To reduce the time it takes for VPR to make each route, it will not consider a route

between two points that goes more than three channels beyond the points’ bounding-box. The

large blue box in Figure 6 shows the entire region VPR will consider using to route a

connection between the pink blocks. If no connection can

be made within this area, even if a connection is possible

that goes outside the blue box, VPR will consider the

desired route impossible.

Figure 7 shows the problem caused by a very large hard

macro. If the hard macro cuts the blue box in two, with one

end of a net on either side of the hard macro, VPR will not

be able to form the connection needed between them

without leaving the blue box, and the route will fail.

a. b.

Figure 5. Display of VPR’s Routing With Black Wires (thickened for clarity) in the
Pink Region (a), and With No Black Wires in the Pink Region (b)

Figure 6. Bounding-Box

 8

VPR has a command line option that allows a user to

determine how far outside the bounding-box it should look

in building routes. The number three is a default, not built

in to the algorithm itself. By setting this number to three

plus the size of the hard macro, I was able to get the

Benchmarks to route that would not route previously.

6) While working on the bounding-box problem, I also

improved the mechanism ensuring that only hard-macro-

related (pink) wires were allowed to route through the pink

region. The original approach had been created by a former student, although it had not been

fully implemented before I worked with VPR, and in working on the bounding-box issue, I

found a flaw in this student’s approach.

When VPR attempts to create a route, it builds it one net at a time. For each net, VPR creates

a heap data structure containing one node for each channel that might be used in routing the

net, each with a cost assigned, reflecting how full that channel was in previous routing

attempts. VPR then routes the net, creating a path through FPGA channels that joins all of its

endpoints, by choosing the lowest cost channels it can find in the heap.

During this process, VPR keeps track of only the cost of channels, not whether they have

been filled to capacity, so it is common for VPR to create routes in which some channels are

overfilled. Thus, after VPR has routed all nets, it checks to see if any channels are overfilled,

and if so discards the route, starting it over with the costs of the overfilled channels

increased. Because, if channels are too small, there might be no way to create a route that

does not overfill channels, VPR will only make thirty routing attempts at a given channel size

before declaring this size too small and giving up.

The former student’s approach to keeping non-hard-macro (black) wires from being routed

through hard macro (pink) channels was to make the router think that all of the hard macro

channels were full whenever a non-hard-macro net was being routed. Since VPR will route

Figure 7. Bounding-Box
With Large Hard Macro

 9

nets through full channels, only checking for this problem after the route is completed, this

was allowing some of the thirty allowed routing attempts to be wasted on routes that put non-

hard-macro wires in hard macro channels. In some cases, all thirty attempts were being

wasted in this fashion causing VPR to declare routing impossible. I modified the code so that

when VPR is routing an individual net, if it is a non-hard-macro net, no hard macro channels

will ever be put on the heap. This way, no

illegal arrangements waste router iterations.

7) The final modification I made to VPR was to

enable it to handle more than one hard macro.

I had originally intended to create a format

for a new input file a user could give VPR

that would describe the location and size of

each hard macro and the size of each channel

surrounding the hard macros. While this is a

very general input format, it would not have

been very practical for the work my mentor

wants to do – which is placing and routing a

a. b.

Figure 8. VPR Placement (a) and Routing (b) of an FPGA with Four Hard Macros

Figure 9. VPR Display of an FPGA with
Two Hard Macros

 10

large number of Benchmark circuits of very different sizes with groups of identically sized

hard macros in symmetric arrangements. For this purpose, it seemed more useful for a user to

input what the arrangement would be with some kind of keyword, and have routines that

would figure out the exact coordinates of each hard macro based on the size of the FPGA

being used. I wrote routines to arrange two or four hard macros symmetrically around the

FPGA’s center, and it should be easy to add more routines as needed in the future. Figure 8

shows a placement and routing for an FPGA with four hard macros, and Figure 9 shows a

placement for an FPGA with two hard macros.

8) Figure 10, below, traces all of the modifications I have made to VPR:

Figure 10. VPR Modifications

Logic Blocks Selected to Model
Hard Macro

Arbitrary Channels Can Have
Any Desired Size

Hard Macro Automatically
Surrounded by Wide Channels

No FPGA Signals are Routed
Through the Hard Macro

Bounding-Box and Heap Routing
Problems Corrected

Multiple Hard Macros Allowed

 11

Experimental Results:

When the modifications to VPR were completed, I ran a preliminary experiment on ten of the

twenty MCNC Benchmark circuits: Alu4, Apex4, Diffeq, Ex5p, Spla, Elliptic, Frisc, S 38417, S

38584, and Clma. In these experiments, a single hard macro, occupying 4% of the FPGA’s area

was placed in the center of the FPGA. Each trial was run once with the channels around the hard

macro the same size as the FPGA’s other channels, and once with

these channels twice as large. VPR then determined the smallest

number of routing tracks needed to route the circuit in both

configurations.

A random number generator is involved in determining which

blocks will be a part of the hard macro. Because the particular

blocks that are chosen will affect placement and routing, for each

Benchmark, I ran three different trials, each one giving a different

seed to the random number generator so that different hard macros

would be created. Thus, for each of the ten Benchmark circuits

used, six data points were generated, one for each seed with

normal sized channels, and one for each seed with double sized

channels.

One of the most significant differences between hard macros made

from different logic blocks is that they will have different numbers

of connections to blocks outside the hard macro, potentially

affecting how congested routing tracks around the hard macro are.

Figure 11 shows two different methods of computing the connectivity of a hard macro. Both hard

macros in Figure 11 connect to four nets, four pieces of wiring connecting them to the rest of the

FPGA. In Figure 11 a, however each net has only two pins, one inside the hard macro and one

outside, while in 11 b each net has many pins. When describing the connectivity of a hard macro,

we list how many pins it has rather than how many nets it has so that circuits like the one in 11 b

will be distinguished from the one in 11 a. The term “special pins” in the experimental results

a. Eight Pins

b. Sixteen Pins

Figure 11. Two
Different Hard Macros

With Four Nets

 12

refers to the total number of pins in all of the nets connecting to the FPGA’s “special regions,”

the groups of logic blocks representing hard macros.

1) Preliminary Experiment:

Figures 12 a - j, below, show the results of the preliminary experiment on each of the ten

Benchmark circuits that were used. In each graph, the smallest number of routing tracks that was

needed for the circuit to route successfully is plotted versus the number of special pins in the

circuit’s hard macro. For each circuit there are data-points for three different numbers of special

pins, reflecting the three different hard macros that were created with three different seeds. For

each of these three hard macros, there is a data-point in blue representing the result with

uniformly sized channels and a data-point in pink showing the result with doubly wide channels

around the hard macro.

A low data-point represents a successful route – one that required few routing tracks. Thus,

whenever a pink point is below its corresponding blue point, the double-wide channels made

routing more successful, but whenever the pink point is above its corresponding blue point, the

double-wide channels made routing less successful.

Alu4

850

950

1050

1150

3440 3480 3520 3560 3600

Special Pins

R
ou

tin
g

Tr
ac

ks

Normal Channels Double Channels

Apex4

750

850

950

1050

2300 2400 2500 2600

Special Pins

R
ou

tin
g

T
ra

ck
s

Normal Channels Double Channels

Figure 12 a Figure 12 b

 13

Diffeq

700

800

900

1000

1100

2440 2480 2520 2560

Special Pins

R
ou

tin
g

T
ra

ck
s

Normal Channels Double Channels

Ex5p

0

400

800

1200

1932 1936 1940 1944 1948 1952

Special Pins
R

ou
tin

g
T

ra
ck

s

Normal Channels Double Channels

Figure 12 c Figure 12 d

Spla

2200

2400

2600

2800

3000

8000 8200 8400 8600

Special Pins

R
ou

tin
g

T
ra

ck
s

Normal Channels Double Channels

Elliptic

1700

1800

1900

2000

2100

2200

7000 7200 7400 7600

Special Pins

R
ou

tin
g

Tr
ac

ks

Normal Channels Double Channels

Figure 12 e Figure 12 f

 14

Frisc

2150

2350

2550

6400 6500 6600 6700 6800

Special Pins

R
ou

tin
g

Tr
ac

ks

Normal Channels Double Channels

S 38417

3150

3350

3550

3750

8400 8600 8800 9000

Special Pins

R
ou

tin
g

Tr
ac

ks

Normal Channels Double Channels

Figure 12 g Figure 12 h

S 38584

3000

3200

3400

3600

9400 9600 9800 10000

Special Pins

R
ou

tin
g

Tr
ac

ks

Normal Channels Double Channels

Clma

4100

4500

4900

17600 18000 18400

Special Pins

R
ou

tin
g

Tr
ac

ks

Normal Channels Double Channels

Figure 12 i Figure 12 j

Comparing all of the data in Figures 12 a – j, there were two circuits, Diffeq (c) and S 38417 (h),

for which the double-wide channels improved routing with all three hard macro seeds, and there

was no circuit for which double-wide channels always made routing worse. Nonetheless, overall

 15

the double-wide channels seem as likely to worsen the routability as to make it better.

Additionally, there does not appear to be any attribute of the data that correlates with the number

of special pins.

Figure 13 a brings together the data from Figures 12 a – j, showing the average number of

routing tracks needed with normal and double-wide channels for each circuit. This graph shows

that about half the time more tracks are needed with the double-wide channels, and the other half

the time, less. Figure 13 b shows the data from Figures 12 a – j in terms of routing track

reduction, the number of routing tracks needed with normal channels minus the number of tracks

needed with double-width channels present. The values in Figure 13 b are positive, indicating

improvement with the double-wide channels, half the time and negative the other half.

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

A
ve

ra
ge

 R
ou

tin
g

Tr
ac

ks

A
lu

4
A

pe
x4

D
iff

eq
Ex

5p
Sp

la
El

lip
tic

Fr
isc

S
38

41
7

S
38

58
4

Cl
m

a

Normal Channels Double Channels

-600

-400

-200

0

200

400

600

0 5000 10000 15000 20000

Special Pins

R
ou

tin
g

Tr
ac

k
R

ed
uc

tio
n

Figure 13 a Figure 13 b

Figure 14 a shows the amount of congestion in the channels surrounding the hard macro,

showing the fraction of the tracks in these channels that are occupied when the channels are

normal size and when they are double-wide. In all cases, the congestion is less with double-wide

channels than it was with normal size channels, but the amount of initial congestion and the

 16

amount of change varies. The values in this graph are averages across all three random number

generator seeds.

Figure 14 b shows routing track reduction as a function of congestion reduction. While Figure 13

b showed three data-points for each circuit, Figure 14 b shows one point per circuit, the average

across all three seeds. With the exception of the rightmost point, all of the positive – successful –

points occur when congestion is lessened by 5 to 20 %. Below 5 percent congestion relief, the

routing track reduction is near zero – doubling these channels did not make them big enough to

remove congestion problems, so routing was no easier than before. Above 20 %, routing track

reduction is extremely negative – congestion was made so low that there is a great deal of wasted

space in the FPGA. This suggests that rather than doubling the size of the channels around the

hard macro regardless of the size of the FPGA being used, results might be better if the channels

were increased by an amount that would relieve congestion by 5 – 20 % for that size FPGA.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

C
ha

nn
el

 U
sa

ge

A
lu

4
A

pe
x4

Ex
5p

D
iff

eq
Sp

la
El

lip
tic

Fr
isc

S
38

41
7

S
38

58
4

Cl
m

a

Normal Channels Double Channels

-200

-150

-100

-50

0

50

100

150

200

0 0.05 0.1 0.15 0.2 0.25 0.3

Congestion Relief

R
ou

tin
g

Tr
ac

k
R

ed
uc

tio
n

Figure 14 a Figure 14 b

 17

2) Second Experiment – Adding Rather than Doubling:

The data in Figure 14 seems to indicate small congestion relief and small change in routing for

the smallest Benchmark circuits, large congestion relief, usually accompanied by wasted space

for large Benchmarks, and the best results for intermediately sized Benchmark circuits. It seemed

that making channels around the hard macro more than twice as large as other channels for the

small Benchmarks, and less than twice as large for the large Benchmarks might give better

results than were obtained in the preliminary experiment.

To explore this, I repeated the preliminary experiment using only a single seed, adding ten tracks

to the channels around the hard macro rather than doubling them. The results of this are shown in

Figures 15 a – b. Although ten tracks are about how many tracks were added to the

intermediately sized circuits, more than were added to the small circuits and less than were added

to the large circuits, the data from this experiment is quite similar to that in the preliminary

experiment, about half improvements with the wider channels and half worsenings. My estimate

of ten extra tracks was very rough – its failure indicates that much more careful analysis of

FPGA size, hard macro size, and hard macro connectivity will be necessary to determine the

exact size widened channels need to be to be useful.

0

1000

2000

3000

4000

5000

6000

R
ou

tin
g

Tr
ac

ks

A
lu

4
A

pe
x4

D
iff

eq
Ex

5p
Sp

la
El

lip
tic

Fr
isc

S
38

41
7

S
38

58
4

Cl
m

a

Normal Channels Double Channels

-250
-200
-150
-100

-50
0

50
100
150
200
250
300

0 2000 4000 6000

Special Pins

R
ou

tin
g

Tr
ac

k
R

ed
uc

tio
n

Figure 15 a Figure 15 b

 18

3) Experiments with Multiple Hard Macros:

In addition to my experiments with a single hard macro at the FPGA’s center, I ran several trials

with four hard macros arranged symmetrically around the center of the FPGA, mainly to

demonstrate that the multiple hard macro features added to VPR worked correctly. Detailed

analysis is needed even to run proper experiments with a single hard macro, so at this stage we

are certainly not ready to run extensive experiments with multiple hard macros. I ran trials using

a single seed on just three Benchmark circuits: Alu4, Apex4 and Spla. Each hard macro occupied

1% of the FPGA’s area, so together, the four hard macros filled 4 % of the FPGA, as in previous

experiments. As in the preliminary experiment, channels around the hard macros were made

twice as wide as the FPGA’s other channels. The results, shown in Figures 16 a – b, are similar

to previous data, half improvements, half worsenings, again because the decision to make wide

channels doubly wide is arbitrary and not chosen to be optimal for this hard macro arrangement.

0

500

1000

1500

2000

2500

3000

3500

R
ou

tin
g

Tr
ac

ks

Alu4 Apex4 Diffeq

Normal Channels Double Channels

-200

-150

-100

-50

0

50

100

150

200

250

1500 2500 3500 4500

Special Pins

R
ou

tin
g

Tr
ac

k
R

ed
uc

tio
n

Figure 16 a Figure 16 b

Possible Future Work:

My primary contribution to this project was preparing the VPR program for experimentation. I

ran several experiments to gather some preliminary data, but these mainly just demonstrate the

 19

CAD tool’s effectiveness and do not lead to many useful conclusions. Thorough analysis of what

size channels around a hard macro should be, based on FPGA size, and hard macro size and

connectivity will be necessary to run more productive experiments on arrangements of single and

multiple hard macros. In future work, we may explore increasing the size of not just the channels

immediately around hard macros, but of the first three or four rows of channels around them. We

may also investigate whether heterogeneous channel structures might be more effective when

hard macros occupy a greater fraction of the FPGA’s area. This was the case, as shown in Figure

17, in the only trial I ran that routed the same circuit (the e64 circuit) with two hard macros of

different sizes. Larger hard macros should affect more of the FPGA’s routing and might produce

more problems that wide channels could alleviate. The version of VPR I have modified is now

capable of performing these experiments.

Summary:

We want to investigate whether a heterogeneous channel structure, particularly one with widened

channels around the edges of hard macros could improve routing in FPGAs containing hard

macros. I have modified the VPR placer router tool to create arrangements of hard macros and

widened channels, allowing placement and routing to be performed on these structures.

Figure 17

0

100

200

300

400

5% 10%

Normal
Channels

Double
Channels

% of FPGA Area Occupied by Hard Macro

Minimum
of Routing

Tracks

 20

Preliminary experiments I have performed with VPR indicate that doubling the width of

channels along the edges of a hard macro does not improve routability and further analysis must

be done to determine how much these channels should be widened to be useful. The VPR tool is

ready for future experimentation based on this analysis.

 21

References:

[1] V. Betz and J. Rose, “VPR: A New Packing, Placement and Routing Tool for FPGA

Research,” International Workshop on Field Programmable Logic and Applications, 1997.

[2] J. Wakerly, Digital Design Principles and Practices, Prentice Hall, 2001.

[3] W. Wolf, FPGA-Based System Design, Prentice Hall, 2004.

[5] V. Betz and J. Rose, “Effect of the Prefabricated Routing Track Distribution on FPGA

Area-Efficiency,” IEEE Transactions on VLSI, Vol. 6, No. 3, Sept. 1998, pp. 445-456.

[4] P. Hallschmid and S. Wilton, “Detailed Routing Architectures for Embedded

Programmable Logic IP Cores,” ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, Monterey CA, Feb. 2001, pp. 69-74.

