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Project Description: 

I have been modifying an FPGA placer/router tool called Versatile Placer/Router (VPR) [1] to 

handle heterogeneous as well as homogeneous FPGA architectures. We want to experiment with 

heterogeneous FPGAs with embedded hard macros such as processors or multipliers to 

determine what FPGA routing channel structure allows for the greatest routability around these 

hard macros. 

 

Introduction: 

A field programmable gate array (FPGA) is a programmable device that can implement many 

different digital circuit designs.  FPGAs contain four types of elements called: logic blocks, 

routing channels, switch boxes, and IO pins, arranged as shown in Figure 1. The body of the 

FPGA is a grid of logic blocks, colored green in Figure 1. The grid in Figure 1 is small for 
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Figure 1. FPGA Structure 
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clarity- the grids in most actual FPGAs contain many more logic blocks. The spaces between the 

logic blocks are called routing channels, marked yellow for horizontal channels and pink for 

vertical channels in Figure 1. Switch boxes appear wherever vertical and horizontal channels 

intersect, and as with other chips, the FPGA is bordered by IO pins (shown in blue) allowing for 

communication with the external world. 

  

The structure and complexity of an FPGA’s logic blocks varies from device to device. However, 

in look-up-table (LUT) based FPGAs, the type we are studying, logic blocks always contain at 

least one LUT - which can be programmed to implement any Boolean function of some small 

number of variables - and one flip-flop [2]. Thus, each logic block can be programmed to either 

perform a small amount of logic, store a small amount of data, or sometimes both. The FPGA’s 

vertical and horizontal routing channels are made up of banks of wires, through which signals 

can travel between the logic blocks and between logic blocks and IO pins. Many vertical and 

horizontal wires go into each of the FPGA’s switch boxes, and these switch boxes are 

programmed to form only some of the many possible connections between these wires, causing 

the signals in the FPGA to be routed to the correct places. 

 

When working with an FPGA, one designs a large digital circuit, and then a software synthesis 

tool breaks it down into pieces small enough to be implemented by single logic blocks. Then a 

second computer-aided design (CAD) tool, called a placer/router, is needed to determine exactly 

where on the FPGA each part of the design should be located. As the name implies, a 

placer/router’s work has two stages: placement and routing. Placement determines exactly which 

FPGA logic blocks should implement which logic-block sized pieces of the circuit design, and 

routing decides how the FPGA’s switch boxes should be configured so that the circuit’s signals 

will travel to the appropriate places through the FPGA’s channels. The placer tries to arrange the 

logic blocks in a way that will minimize the distance signals in the circuit will have to travel. The 

router tries to minimize the amount of wiring needed and the speed the final circuit will run at. 

Routing is generally much more time-consuming than placement. My work involved modifying 

the C-code for a placer/router tool called Versatile Place and Route (VPR) that was developed at 

the University of Toronto [1]. 
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Most FPGAs look somewhat like Figure 1 in that all of their logic blocks have the same 

structure, all of their routing channels are the same size, and basically their entire structure is 

uniform. Such FPGAs are called homogeneous FPGAs.  We are interested in studying 

heterogeneous FPGAs –  those in which some parts of the FPGA are different. Particularly, we 

want to study FPGAs with embedded hard macros: non-reconfigurable hardware such as 

processors and multipliers inserted somewhere in the FPGA [3]. An example of such a device is 

the Xilinx Virtex II Pro FPGA, equipped with embedded memory blocks, a multiplier, and two 

processors. 

 

Our goal is to determine whether non-uniform channel sizes would be useful in FPGAs 

containing hard macros. A study conducted by the makers of VPR showed that for homogeneous 

FPGAs it is optimal for all channels to be the same size [4], however their study did not involve 

any hard macros. We plan to conduct our investigation by using VPR to place and route circuits 

from the twenty-circuit MCNC Benchmark Suite on FPGA architectures containing hard macros 

with several different channel structures. The VPR program was not designed to work with this 

type of heterogeneous FPGA, so I modified VPR to handle these architectures. 

 

Another related study was conducted in 2001 by P. Hallschmid and S. Wilton [5]. Their study 

differs from ours in that it focused on embedded memory blocks whereas we are considering 

general hard macros, and their study used detailed routing, while we are using global routing. 

The difference between detailed and global routing concerns switch boxes. The simplest (and 

most expensive) type of switch box one could build would be capable of making a connection 

between any two of the wires entering it. This requires more hardware than is found in actual 

switch boxes –  which usually are only able to form some of these connections. In detailed 

routing, one gives specific information about the switch boxes of the FPGA being used to 

produce a route that could be downloaded to an actual FPGA. In global routing, one assumes 

ideal switch boxes that can form any possible connection. Global routing is good for 

experimenting with hypothetical FPGA architectures that do not yet have any specific switch box 

structure. At this stage, we are not concerned with switch behavior, so global routing is 

appropriate for our work. 
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Contributions: 

1) The first modification I made to VPR was to 

allow a user to specify any channel in the FPGA 

and determine what size that channel would be, 

either in absolute units, or relative to the size of 

a typical channel. The relative size is useful 

because the size of a typical channel is not 

usually known before routing takes place. VPR 

performs a binary search to determine the 

smallest size for typical channels that will not 

make routing impossible. Figure 2 shows VPR’s 

display of an FPGA with some channels wider 

than others. The gray squares represent logic 

blocks and the subdivided gray squares along 

the border represent IO pins. 

 

2) Next I integrated some code written by a 

former student working with my mentor into 

my modified version of VPR. The MCNC 

Benchmark circuits we are placing and 

routing in our study do not contain any hard 

macros –  when we place and route a circuit, 

we want to select a group of logic blocks 

from that design to model a hard macro in 

our experiment. The former student’s code 

chooses logic blocks to represent the hard 

macro, places them together in a square at 

the FPGA’s center, and colors these blocks 

and wires that connect to them pink in 

VPR’s graphical user interface (GUI) 

display (see Figure 3). His code ensures that 

Figure 2. VPR Display of an FPGA with 
Two Very Wide Channels 

Figure 3. VPR Display of an FPGA with 
A Hard Macro at its Center 
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the blocks are chosen at random (i.e. not the blocks that happen to be adjacent after 

placement) to ensure high connectivity to logic blocks that are not also in the hard macro. I 

integrated this portion of his code into my copy of VPR rather than initially adding my 

modifications to his version of the program because other sections of his code are incomplete 

and do not work properly. 

 

3) I then changed VPR so that when a hard macro is present, VPR will automatically find the 

channels next to the hard macro and make these channels twice as large as a typical channel. 

The decision to make them twice as large is 

arbitrary and easily changed. This 

modification just makes it easy to change all 

of these channels as a group. Figure 4 shows 

VPR’s display of an FPGA with a hard 

macro surrounded by wide channels. 

 

4)  The next stage of my work –  which was 

planned but not completed by my mentor’s 

former student –  was to change VPR’s 

routing behavior so that only pink wires, 

wires that connect to a block inside the hard 

macro are allowed to route through the 

channels inside the fixed macro. This makes 

our model hard macro similar to a real one, which would allow signals connecting to the hard 

macro to enter it though its pins, but occupy a space containing no channels for other signals 

to route through. Figure 5 shows a VPR routing display before and after this modification. 

Wires that are not colored pink are drawn in black. 

 

5) At this point in my work with VPR, there was an unexpected challenge. VPR had been 

modified enough to run a preliminary experiment on ten of the twenty Benchmark circuits, 

and in attempting to run these trials I discovered that VPR consistently failed to route the five 

largest Benchmarks I was working with. 

Figure 4. VPR Display of an FPGA with 
a Hard Macro Surrounded by Wide 

Channels 
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Analysis of the problem showed that very large hard macros interfered with VPR’s routing 

algorithm. Figure 6 shows an FPGA with yellow squares representing logic blocks. Consider 

VPR attempting to route a connection between the two pink squares. The rectangle formed 

with these squares as its corners, drawn in pink, is called the bounding-box of these two logic 

blocks. To reduce the time it takes for VPR to make each route, it will not consider a route 

between two points that goes more than three channels beyond the points’  bounding-box. The 

large blue box in Figure 6 shows the entire region VPR will consider using to route a 

connection between the pink blocks. If no connection can 

be made within this area, even if a connection is possible 

that goes outside the blue box, VPR will consider the 

desired route impossible. 

 

Figure 7 shows the problem caused by a very large hard 

macro. If the hard macro cuts the blue box in two, with one 

end of a net on either side of the hard macro, VPR will not 

be able to form the connection needed between them 

without leaving the blue box, and the route will fail. 

a.      b. 
 

Figure 5. Display of VPR’s Routing With Black Wires (thickened for clarity) in the 
Pink Region (a), and With No Black Wires in the Pink Region (b) 

Figure 6. Bounding-Box 
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VPR has a command line option that allows a user to 

determine how far outside the bounding-box it should look 

in building routes. The number three is a default, not built 

in to the algorithm itself. By setting this number to three 

plus the size of the hard macro, I was able to get the 

Benchmarks to route that would not route previously. 

 

6) While working on the bounding-box problem, I also 

improved the mechanism ensuring that only hard-macro-

related (pink) wires were allowed to route through the pink 

region. The original approach had been created by a former student, although it had not been 

fully implemented before I worked with VPR, and in working on the bounding-box issue, I 

found a flaw in this student’s approach. 

 

When VPR attempts to create a route, it builds it one net at a time. For each net, VPR creates 

a heap data structure containing one node for each channel that might be used in routing the 

net, each with a cost assigned, reflecting how full that channel was in previous routing 

attempts. VPR then routes the net, creating a path through FPGA channels that joins all of its 

endpoints, by choosing the lowest cost channels it can find in the heap. 

 

During this process, VPR keeps track of only the cost of channels, not whether they have 

been filled to capacity, so it is common for VPR to create routes in which some channels are 

overfilled. Thus, after VPR has routed all nets, it checks to see if any channels are overfilled, 

and if so discards the route, starting it over with the costs of the overfilled channels 

increased. Because, if channels are too small, there might be no way to create a route that 

does not overfill channels, VPR will only make thirty routing attempts at a given channel size 

before declaring this size too small and giving up. 

 

The former student’s approach to keeping non-hard-macro (black) wires from being routed 

through hard macro (pink) channels was to make the router think that all of the hard macro 

channels were full whenever a non-hard-macro net was being routed. Since VPR will route 

Figure 7. Bounding-Box 
With Large Hard Macro 
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nets through full channels, only checking for this problem after the route is completed, this 

was allowing some of the thirty allowed routing attempts to be wasted on routes that put non-

hard-macro wires in hard macro channels. In some cases, all thirty attempts were being 

wasted in this fashion causing VPR to declare routing impossible. I modified the code so that 

when VPR is routing an individual net, if it is a non-hard-macro net, no hard macro channels 

will ever be put on the heap. This way, no 

illegal arrangements waste router iterations. 

 

7) The final modification I made to VPR was to 

enable it to handle more than one hard macro. 

I had originally intended to create a format 

for a new input file a user could give VPR 

that would describe the location and size of 

each hard macro and the size of each channel 

surrounding the hard macros. While this is a 

very general input format, it would not have 

been very practical for the work my mentor 

wants to do –  which is placing and routing a 

a.      b. 
 

Figure 8. VPR Placement (a) and Routing (b) of an FPGA with Four Hard Macros 

Figure 9. VPR Display of an FPGA with 
Two Hard Macros 
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large  number of Benchmark circuits  of  very different  sizes with groups of identically sized  

hard macros in symmetric arrangements. For this purpose, it seemed more useful for a user to 

input what the arrangement would be with some kind of keyword, and have routines that 

would figure out the exact coordinates of each hard macro based on the size of the FPGA 

being used. I wrote routines to arrange two or four hard macros symmetrically around the 

FPGA’s center, and it should be easy to add more routines as needed in the future. Figure 8 

shows a placement and routing for an FPGA with four hard macros, and Figure 9 shows a 

placement for an FPGA with two hard macros. 

 

8) Figure 10, below, traces all of the modifications I have made to VPR:   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. VPR Modifications 

Logic Blocks Selected to Model 
Hard Macro 

Arbitrary Channels Can Have 
Any Desired Size 

Hard Macro Automatically 
Surrounded by Wide Channels 
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Experimental Results: 

When the modifications to VPR were completed, I ran a preliminary experiment on ten of the 

twenty MCNC Benchmark circuits: Alu4, Apex4, Diffeq, Ex5p, Spla, Elliptic, Frisc, S 38417, S 

38584, and Clma. In these experiments, a single hard macro, occupying 4% of the FPGA’s area 

was placed in the center of the FPGA. Each trial was run once with the channels around the hard 

macro the same size as the FPGA’s other channels, and once with 

these channels twice as large. VPR then determined the smallest 

number of routing tracks needed to route the circuit in both 

configurations. 

 

A random number generator is involved in determining which 

blocks will be a part of the hard macro. Because the particular 

blocks that are chosen will affect placement and routing, for each 

Benchmark, I ran three different trials, each one giving a different 

seed to the random number generator so that different hard macros 

would be created. Thus, for each of the ten Benchmark circuits 

used, six data points were generated, one for each seed with 

normal sized channels, and one for each seed with double sized 

channels. 

 

One of the most significant differences between hard macros made 

from different logic blocks is that they will have different numbers 

of connections to blocks outside the hard macro, potentially 

affecting how congested routing tracks around the hard macro are. 

Figure 11 shows two different methods of computing the connectivity of a hard macro. Both hard 

macros in Figure 11 connect to four nets, four pieces of wiring connecting them to the rest of the 

FPGA. In Figure 11 a, however each net has only two pins, one inside the hard macro and one 

outside, while in 11 b each net has many pins. When describing the connectivity of a hard macro, 

we list how many pins it has rather than how many nets it has so that circuits like the one in 11 b 

will be distinguished from the one in 11 a. The term “special pins” in the experimental results 

a. Eight Pins 
 
 
 
 
 
 
 
 
 
 
 

b. Sixteen Pins 
 

Figure 11.  Two 
Different Hard Macros 

With Four Nets 
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refers to the total number of pins in all of the nets connecting to the FPGA’s “special regions,” 

the groups of logic blocks representing hard macros. 

 

1) Preliminary Experiment: 

Figures 12 a - j, below, show the results of the preliminary experiment on each of the ten 

Benchmark circuits that were used. In each graph, the smallest number of routing tracks that was 

needed for the circuit to route successfully is plotted versus the number of special pins in the 

circuit’s hard macro. For each circuit there are data-points for three different numbers of special 

pins, reflecting the three different hard macros that were created with three different seeds. For 

each of these three hard macros, there is a data-point in blue representing the result with 

uniformly sized channels and a data-point in pink showing the result with doubly wide channels 

around the hard macro. 

 

A low data-point represents a successful route –  one that required few routing tracks. Thus, 

whenever a pink point is below its corresponding blue point, the double-wide channels made 

routing more successful, but whenever the pink point is above its corresponding blue point, the 

double-wide channels made routing less successful. 
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Figure 12  a                                                           Figure 12  b 
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Figure 12  c                                                           Figure 12 d 
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Figure 12  e                                                           Figure 12  f 
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Figure 12  g                                                           Figure 12  h 
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Figure 12  i                                                           Figure 12  j 

 

Comparing all of the data in Figures 12 a –  j, there were two circuits, Diffeq (c) and S 38417 (h), 

for which the double-wide channels improved routing with all three hard macro seeds, and there 

was no circuit for which double-wide channels always made routing worse. Nonetheless, overall 
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the double-wide channels seem as likely to worsen the routability as to make it better. 

Additionally, there does not appear to be any attribute of the data that correlates with the number 

of special pins. 

 

Figure 13 a brings together the data from Figures 12 a –  j, showing the average number of 

routing tracks needed with normal and double-wide channels for each circuit. This graph shows 

that about half the time more tracks are needed with the double-wide channels, and the other half 

the time, less. Figure 13 b shows the data from Figures 12 a –  j in terms of routing track 

reduction, the number of routing tracks needed with normal channels minus the number of tracks 

needed with double-width channels present. The values in Figure 13 b are positive, indicating 

improvement with the double-wide channels, half the time and negative the other half. 

 

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

A
ve

ra
ge

 R
ou

tin
g 

Tr
ac

ks

A
lu

4
A

pe
x4

D
iff

eq
Ex

5p
Sp

la
El

lip
tic

Fr
isc

S 
38

41
7

S 
38

58
4

Cl
m

a

Normal Channels Double Channels

 

-600

-400

-200

0

200

400

600

0 5000 10000 15000 20000

Special Pins

R
ou

tin
g 

Tr
ac

k 
R

ed
uc

tio
n

  
Figure 13  a                                                           Figure 13  b 

 

Figure 14 a shows the amount of congestion in the channels surrounding the hard macro, 

showing the fraction of the tracks in these channels that are occupied when the channels are 

normal size and when they are double-wide. In all cases, the congestion is less with double-wide 

channels than it was with normal size channels, but the amount of initial congestion and the 
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amount of change varies. The values in this graph are averages across all three random number 

generator seeds. 

 

Figure 14 b shows routing track reduction as a function of congestion reduction. While Figure 13 

b showed three data-points for each circuit, Figure 14 b shows one point per circuit, the average 

across all three seeds. With the exception of the rightmost point, all of the positive –  successful –  

points occur when congestion is lessened by 5 to 20 %. Below 5 percent congestion relief, the 

routing track reduction is near zero –  doubling these channels did not make them big enough to 

remove congestion problems, so routing was no easier than before. Above 20 %, routing track 

reduction is extremely negative –  congestion was made so low that there is a great deal of wasted 

space in the FPGA. This suggests that rather than doubling the size of the channels around the 

hard macro regardless of the size of the FPGA being used, results might be better if the channels 

were increased by an amount that would relieve congestion by 5 –  20 % for that size FPGA. 
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2) Second Experiment –  Adding Rather than Doubling: 

The data in Figure 14 seems to indicate small congestion relief and small change in routing for 

the smallest Benchmark circuits, large congestion relief, usually accompanied by wasted space 

for large Benchmarks, and the best results for intermediately sized Benchmark circuits. It seemed 

that making channels around the hard macro more than twice as large as other channels for the 

small Benchmarks, and less than twice as large for the large Benchmarks might give better 

results than were obtained in the preliminary experiment. 

 

To explore this, I repeated the preliminary experiment using only a single seed, adding ten tracks 

to the channels around the hard macro rather than doubling them. The results of this are shown in 

Figures 15 a –  b.  Although ten tracks are about how many tracks were added to the 

intermediately sized circuits, more than were added to the small circuits and less than were added 

to the large circuits, the data from this experiment is quite similar to that in the preliminary 

experiment, about half improvements with the wider channels and half worsenings. My estimate 

of ten extra tracks was very rough –  its failure indicates that much more careful analysis of 

FPGA size, hard macro size, and hard macro connectivity will be necessary to determine the 

exact size widened channels need to be to be useful.  
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3) Experiments with Multiple Hard Macros: 

In addition to my experiments with a single hard macro at the FPGA’s center, I ran several trials 

with four hard macros arranged symmetrically around the center of the FPGA, mainly to 

demonstrate that the multiple hard macro features added to VPR worked correctly.  Detailed 

analysis is needed even to run proper experiments with a single hard macro, so at this stage we 

are certainly not ready to run extensive experiments with multiple hard macros. I ran trials using 

a single seed on just three Benchmark circuits: Alu4, Apex4 and Spla. Each hard macro occupied 

1% of the FPGA’s area, so together, the four hard macros filled 4 % of the FPGA, as in previous 

experiments. As in the preliminary experiment, channels around the hard macros were made 

twice as wide as the FPGA’s other channels. The results, shown in Figures 16 a –  b, are similar 

to previous data, half improvements, half worsenings, again because the decision to make wide 

channels doubly wide is arbitrary and not chosen to be optimal for this hard macro arrangement. 
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Possible Future Work: 

My primary contribution to this project was preparing the VPR program for experimentation. I 

ran several experiments to gather some preliminary data, but these mainly just demonstrate the 
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CAD tool’s effectiveness and do not lead to many useful conclusions. Thorough analysis of what 

size channels around a hard macro should be, based on FPGA size, and hard macro size and 

connectivity will be necessary to run more productive experiments on arrangements of single and 

multiple hard macros. In future work, we may explore increasing the size of not just the channels 

immediately around hard macros, but of the first three or four rows of channels around them. We 

may also investigate whether heterogeneous channel structures might be more effective when 

hard macros occupy a greater fraction of the FPGA’s area. This was the case, as shown in Figure 

17, in the only trial I ran that routed the same circuit (the e64 circuit) with two hard macros of 

different sizes. Larger hard macros should affect more of the FPGA’s routing and might produce 

more problems that wide channels could alleviate.  The version of VPR I have modified is now 

capable of performing these experiments. 

 

Summary: 

We want to investigate whether a heterogeneous channel structure, particularly one with widened 

channels around the edges of hard macros could improve routing in FPGAs containing hard 

macros. I have modified the VPR placer router tool to create arrangements of hard macros and 

widened channels, allowing placement and routing to be performed on these structures. 

Figure 17 
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Preliminary experiments I have performed with VPR indicate that doubling the width of 

channels along the edges of a hard macro does not improve routability and further analysis must 

be done to determine how much these channels should be widened to be useful. The VPR tool is 

ready for future experimentation based on this analysis. 



 21 

References: 

[1] V. Betz and J. Rose, “VPR: A New Packing, Placement and Routing Tool for FPGA 

Research,” International Workshop on Field Programmable Logic and Applications, 1997. 

 

[2]  J. Wakerly, Digital Design Principles and Practices, Prentice Hall, 2001. 

 

[3] W. Wolf, FPGA-Based System Design, Prentice Hall, 2004.  

 

[5] V. Betz and J. Rose, “Effect of the Prefabricated Routing Track Distribution on FPGA 

Area-Efficiency,” IEEE Transactions on VLSI, Vol. 6, No. 3, Sept. 1998, pp. 445-456. 

 

[4] P. Hallschmid and S. Wilton, “Detailed Routing Architectures for Embedded 

Programmable Logic IP Cores,” ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, Monterey CA, Feb. 2001, pp. 69-74. 


