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1 Introduction

Bioinformatics has been receiving a lot of attention lately from the research commu-
nity. Bioinformatics blends computer science, biology, and chemistry together. It uses
computers and techniques developed in computer science to solve many problems in
biology and chemistry. Several applications include molecule and protein modeling,
protein sequence alignment, protein folding, rational drug design, and database search-
ing to cull information from large genomes and protein databanks. Bioinformatics is
increasing in popularity because it has applications in all facets of life, and it is a rela-
tively new field with very fertile ground.

Proteins interact with each other in most reactions that occur in the body. They
are involved in everything from DNA transcription and replication to viral protection
to energy consumption and distribution among the cells. Understanding how a protein
interacts with other proteins and how it functions is crucial to understanding how the
body works and functions.

There are three main types of protein-protein interactions: protein-protein interac-
tions, protein-DNA interactions, and the interaction between monomers of multimeric
proteins. Protein-protein interactions occur between two or more proteins. Some ex-
amples are the interaction involving GroEL and GroES to aid in protein folding, the
interaction between calmodulin any myosin to produce muscle contraction, and pro-
tein/antibody binding. Protein-DNA intreactions involve a protein and a piece of DNA.
This situation occurs mostly in DNA replication. Finally, some proteins are made up
of several chains or loops. These chains are intertwined and interact with each other to
dictate how the protein folds, its function, and how it interacts with other things. For
example, HIV-1 protease is make up of two chains (or monomers) that move with each
other.

Our goal is to study these reactions and to simulate them. The difficulty is that
proteins have hundreds to thousands of degrees of freedom. Even when assumptions
are made and their structures are simplified, they are still very complex and difficult
to simulate in a reasonable amount of time. Because of their complexity, most simu-
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lations consider proteins as rigid objects. This is an unreasonable assumption because
some proteins are known to undergo large conformational changes. (They exhibit large
movements durring interactions.) They should be considered flexible, not rigid.

Motion planning techniques are good at computing paths when the robot has many
degrees of freedom. Several algorithms, especially Probabilistic Roadmap Methods
(PRMs) and their variations, have a lot of success in a situation where the robot is com-
plex. By considering the protein to be an articulated robot (a robot with several links),
we can apply the same techniques developed for robot motion planning to protein sim-
ulation.

2 Evidence that Proteins are Flexible

Show proof that proteins do undergo large conformational changes. Show that the rigid
assumption in grossly inadequate in some cases. Give examples and pictures.

2.1 GroEL/GroES Complex

Proteins may make ”bad” connections when trying to fold to their native state. These
”bad” connectections, or aggregates, can cause the protein to function improperly.
Chaperones can prevent and reverse such ”bad” connections by binding to and releas-
ing the unfolded or aggregated protein during the folding process. Chaperones do not
increase the rate of protein folding, they only increase its efficiency.

GroEL and GroES work together (interact) to help peoteins fold into their native
state properly. They do this by surrounding the protein like a cage thereby providing a
safe environment for the protein. GroES binds to the top of GroEL and forms a cage
around the protein. During this interaction, GroEL undergoes large conformational
changes. Pictures of these proteins (obtained from the Protein Data Bank and viewed
through RasMol) are shown in Figure 2.

Figure 1: GroEL/GroES are two chaperones that work together to increase the effi-
ciency of protein folding. The top “cap” is GroES and the bottom two rings is GroEL.
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(a) (b)

Figure 2: GroEL is shown before (a) and after (b) binding to GroES. GroES is removed
for clarity. GroEL undergoes large conformational changes during the binding process.
It stretches upwards and twists in the presense of GroES.

2.2 DNA Polymerases

DNA is made up of two helices. The are designed in such a way that given one helix,
the other helix can be easily determined. Durning DNA replication, these two helicies
are split apart. For each helix, the cell creates the other half. The cell taken one piece
of DNA and made a copy of it. DNA polymerases catalyze this process.

DNA polymerase I (Pol I) was the first enzyme discovered to help synthesize DNA.
Pol I has three main functions: acts as a polymerase, acts as an exonuclease in the
3’ � 5’ direction, and acts as an exonuclease in the 5’ � 3’ direction. As a polymerase,
it helps create the second helix by binding the correct bases. As an exonuclease, it can
correct its mistakes. The exonuclease activity is like proofreading.

This enzyme is shaped like a hand (called the Klenow fragment), see Figure 3.
When it functions as a polymerase, it binds to the DNA just like you would grab a
rod with your hand. When it functions as exonuclease 3’ � 5’, the protein undergoes
a large conformational change and forms another cleft perpendicular to the cleft that
contains the polymerase site. There is yet another binding site for the third function,
exonuclease 5’ � 3’.

The DNA also changes conformation during interaction with Pol I. As Pol I ”grabs”
the DNA, it bends it about 80 degrees. This is large enough that it is no longer realistic
to consider it a rigid object. The DNA, as well as the protein, must be thought of as
flexible.
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Figure 3: DNA Polymerase I is shaped like a hand — shown in blue. It “grabs” the
piece of DNA during DNA replication when it functions as a polymerase. The protein
is shown both space-filled (a) and as a ribbon (b).

2.3 Calmodulin

Calmodulin regulates many important functions in the body by reacting to changing
calcium (Ca2+) levels. For example, it interacts with myosin to perform muscle con-
tractions in the body. Its sensitivity to calcium levels is due to its readiness to bind to
calcium.

Calmodulin has two globular domains connected by a single alpha helix (see Fig-
ure 4, b). Each globular domain contains 2 Ca2+ binding sites. Calmodulin undergoes
large conformational changes when bound to Ca2+. Also, when bound to myosin, the
globular domains remain relatively unchanged, but the alpha helix connecting them
unwinds and contains a sharp bend. The drastic change in conformation is mainly due
to the change in the alpha helix.

3 The Project

The goal of our research this summer is to simulate interactions between proteins. As
discussed above, proteins are complex, dynamic structures. Some motion planning
algorithms have had much success in computing paths for very complex robots. We
want to apply these techniques from robotics to protein-protein interaction simulation.

3.1 Background

One class of motion planning algorithms, Probabilistic Roadmap Methods (PRMs),
have been very successful in computing paths where the robot has many degrees of



3 THE PROJECT 5

(a) (b)

Figure 4: Calmodulin is shown in its unbound (a) and bound (b) states. This large
conformational change is due to the central alpha helix as it winds and unwinds.

freedom in a reasonable amount of time. Although PRMs are not complete (i.e. the
are not guaranteed to find a path if one exists), they are able to find solutions to many
problems quickly. Complete algorithms do exist, but they are prohibitively long and
computationally expensive. PRMs sacrifice completeness for speed.

PRMs build a roadmap through the robot’s configuration space (C-space) that the
robot can use to navigate its environment. A configuration is a unique position and
orientation of the robot. The C-space consists of all configurations, valid or not. In
robotics applications, a valid configuration is considered to be one that is entirely
collision-free. The roadmap is much like a state highway map. It consists of nodes
(cities) and edges (streets).

Roadmap construction consists of two phases: node generation and node connec-
tion. During node generation, nodes are created that form the basis of the roadmap.
These nodes can be generated in a number of ways. The traditional PRM generates
these uniformly at random. These are easy to compute and provide good coverage of
the C-space. Variations of the traditional PRM used other methods to generate nodes.
During node connection, PRM tries to connect each node with its k closest neighbors
via some local planner. Variations of PRM use different methods to connect the nodes
and different local planners.

Once the roadmap is built, a path between any start configuration and goal config-
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uration is easily found. First the start and the goal are connected to the roadmap. Then
the roadmap is searched for the shortest path between the two nodes using a graph
search algorithm.

One particular variation of PRMs are focused on single-query planning. Instead
of building a roadmap that can solve multiple queries, or start and goal pairs, they
tailor the roadmap for one particular query. Two similar methods were developed inde-
pendently at Iowa State University and Stanford University, Steve LaValle’s Rapidly-
exploring Random Trees (RRT) and David Hsu’s planner for expansive configuration
spaces. Both of these methods grow a roadmap from the start towards the goal and
from the goal towards the start until they meet.

RRT alternates node generation and node connection as it expands, or grows, the
roadmap. First a node is generated at random. This node specifies the direction of
expansion. Then the algorithm selects the closest node to the new node. It makes a
small step from this node towards the direction node. If it is collision-free, it adds this
step to the roadmap and connects it to the node it began from. After each new node
and new edge is added, the algorithm checks to see if the goal has been reached or,
in the case of two trees, if the trees meet each other. This process is repeated until a
solution is found. Since the growth is biased by random nodes, the expansion tends to
be a global one, pulling the roadmap out into unexplored regions of the C-space.

Hsu’s algorithm differs in how expansion is biased. Instead of picking a random
node and walking towards it, his algorithm picks a node, x, in the tree based on some
probability. Then several new nodes are generated in the neighborhood of x. Some of
these nodes are kept and only added to the roadmap if an edge exists between it and
x. Again, after eact new node and new edge is added to the roadmap, the algorithm
checks if the goal has been reached or the two tree meet. This algorithm implements
local expansion through neighborhoods while RRT uses a global expansion by random
sampling.

3.2 Biology Considerations

Motion planning algorithms were designed for robotics applications. With just a de-
scription of the robot, the environment, and a collision-checker, difficult motion plan-
ning problems can be solved with ease. These same techniques, although originally
intended for robots, can be applied to proteins.

Proteins are made up of atoms and bonds. Each atom can be modeled as a sphere,
and each bond can be modeled as a rod that connects two atoms together. The protein
can be considered to be an articulated robot, or one with multiple links. Here, the bonds
are the robot’s links and the atoms are the robot’s joints.

Linked robots move based on changes in joint angles, see Figure 5, (a). A joint
angle is the angle between two consecutive links. The number of joint angles plus the
position and orientation of the base are the robot’s degrees of freedom.

Proteins behave slightly differently. Chemists have discovered that bond lengths
and bond angles (the angle between two consecutive bonds) do not change signifi-
cantly during conformational changes. We can safely assume that the bond lengths
and bond angles are fixed. Torsional angles, on the other hand, do change significantly
when the protein’s conformation changes. It is the contributing factor to changes in
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Figure 5: (a) Linked manipulators move based on their joint angles, θ1 and θ2. (b)
Likewise, proteins move based on their torsional angles.

conformation, see Figure 5, (b). The number of torsional angles plus the position and
orientation of the root atom are the protein’s degrees of freedom.

The goal of motion planning algorithms is to produce feasible paths for the robot.
These paths must be realistic. In order for a path to be feasible, at every point along the
path the robot must be collision-free. (A collision-free robot is one that is not colliding
with itself or any other obstacle in the environment.)

The same principle holds true for proteins. Any computed path must be feasible so
the simulation is realistic. The notion of a valid/feasible configuration is more compli-
cated for a protein than for a physical robot. Not only must the protein be collision-free,
it must also be energetically reasonable. In nature, protein conformations typically have
low energies. The same must be true for computed conformations.

This property can be easily included in the collision-checker. Instead of merely
checking for collision, the collision-checker will now also check the energy. By mod-
eling proteins as articulated robots and including the energy function in the collision-
checker, the same motion planning algorithms developed for robots can be directly
applied to proteins.

Unfortunately, exact energy calculations are very time consuming. They would be
inappropriate to include in a collision-checker that is called thousands of times during
roadmap creation. Some assumptions can be made to reduce the running time of the
energy calculations. First, we will only consider the van der Waals energy. Electrostatic
energy and torsional energy make up a small part of the total energy, so they can be
safely neglected.

To compute the van der Waals energy, every pair of atoms must be considered.
Atoms that are close together contribute largely to the total energy. Likewise, atoms
that are far apart do not contribute a whole lot to the total energy. We can approximate
the van der Waals energy by neglecting pairs of atoms that are far apart. To do this, we
impose a cutoff distance. If the distance between the two atoms is larger than the cutoff
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distance (8 Å in our case) then the energy for that pair is not computed. This reduces
the running time of the energy calculation and still gives a good approximation of the
energy.

In summary, motion planning algorithms like PRM and RRT can be applied to
protein-protein interactions by modeling the protein as an articulated robot and includ-
ing the energy function in the collision-checker. If the energy calculation is accurate
and efficient, then these motion planning algorithms will perform well on proteins and
could provide greater insight into how proteins move and function.

3.3 Basic Algorithm

Our algorithm for modeling protein-protein interactions is an extension of RRT and
Hsu’s planner for expansive C-spaces with one large variation. Instead of building
trees, we will build graphs. This way we can look at many different paths from the
start (unbound state) to the goal (bound state) instead of just one solution. This will
improve the quality of the “best” solution and increase our understanding of protein-
protein interactions.

The first conscern is to generate energetically feasible nodes to build the roadmap
with. Because the conformational space is n-dimensional, it is nearly impossible to
perform a systematic search. If we just generate the nodes randomly, the likelihood
that we will find “good” nodes is very small. To combat these difficulties, we first
generate a node randomly and then perform a gradient descent to minimize its energy.

Performing an exact gradient descent is too time consuming to consider. Instead,
we approximate a gradient descent. To do this we first generate a random node near
the original node and compute its energy. If its energy is less than the original node,
we declare it to be the new minimum and replace the original node. If its energy is
greater than the original node, we throw it away. This process is repeated many times,
typically anywhere from 10 to 30 iterations.

To generate a random nearby node, we first select a few rotable bonds at random.
We then apply a small, random displacement in the torsional angles of these bonds.
The resulting conformation is randomly generated, but very similar to the original con-
formation.

Now we have all the building blocks to implement a variation of RRT and Hsu’s
algorithm. Roadmap construction is as follows:

BUILD ROADMAPS(qstart , qgoal)
1. Rstart .init(qstart)
2. Rgoal .init(qgoal)
3. for n � 1 to N do
4. EXTEND(Rstart)
5. EXTEND(Rgoal)
6. CONNECT MAPS(Rstart , Rgoal)
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EXTEND(R)
1. qorig

� SELECT NODE(R)
2. qnew

� GENERATE NEIGHBOR(qorig)
3. MINIMIZE ENERGY(qnew)
4. R.add node(qnew)
5. R.add edges(qnew)

We build two roadmaps, one rooted at the start conformation and one rooted at
the goal conformation. During each iteration, each roadmap is extended. Then the
altorithm attempts to connect the two roadmaps together. We are looking for multiple
paths, so we do not stop the algorithm once CONNECT MAPS() is successful. If we
were looking to save time and only compute one path, we would stop the algorithm as
soon as CONNECT MAPS() is successful and a path is found.

The EXTEND() method simply generates a new nearby node, minimizes its energy,
and then adds it to the roadmap. Then add edges() checks for connections between the
new node and its k closest neighbors. This allows us to build a graph, instead of a tree,
and search for multiple solution paths.

When edges are checked for validity, every node’s energy along that edge is com-
puted. We can use this information to compute an edge weight. The simplest scheme is
to let the edge weight equal the sum of all node energies along that edge. This gives a
higher weight to paths with higher energies. It also gives longer edges a higher weight.
This may unduly bias the algorithm to look for shorter paths, ignoring longer paths that
may be energetically feasible. To avoid this, the average energy along the edge could
be stored as the edge weight intead.

As long as higher weights correspond to edges with high energies and lower weights
correspond to edges with low energies, edge weights can identify the most energetically
feasible paths. A graph search that looks for a path with the lowest total weight would
pull out the most energetically feasible, or “best”, path.

3.4 Implementation

So far, we have implemented several pieces of the algorithm in C++. We began with a
framework developed by Ming Zhang, a postdoc in Dr. Kavraki’s research group. This
framework supplied a working representation of molecules and proteins. We are using
the Atomroup Local Frames approach, developed by Zhang, to quickly calculate the
new xyz postitions of the atoms. An atomgroup is simply a group of atoms that remain
fixed relative to each other. Such groups may be rings, protein sidechains, or atoms
connected by nonrotable bonds.

The code can input and output files in the mol2 format1. We selected this format for
a number of reasons. First, it is very intuitive to use and code. Second, Rasmol, a free
molecule visualization tool, works with mol2 files. Finally, and most importantly, we
can utilize the thousands of protein structures stored in the Protein Databank (PDB).
These strutures are stored as pdb files, but since they are not as intuitive, we use Sybyl2

to convert them to the mol2 file format.
1The mol2 file format developed by Tripos is used by many biochemists.
2Sybyl is an extensive tool for visualization and biological computation developed by Tripos.
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With Paul Murphrey’s help, another member of Dr. Kavraki’s group, we have added
basic energy calculations to the implementation. These calculations compute the van
der Waals energy of the molecule. This energy calculation uses a distance cutoff of 8
Å. This distance is standard in the biochemistry community. To save computation time,
the energy dervived from pairs of atoms in the same atomgroup is only computed in
the first energy calculation. Since these atoms do not move relative to each other, their
van der Waals energy is constant. Depending on how the atomgroups are defined, this
can greatly reduce computation time.

We have also implemented the GENERATE NEIGHBOR() and MINIMIZE ENERGY()
methods. These were fairly straightforward to implement but need some optimization
work.

4 Future Research

The next step is to put all the pieces together to develope the entire algorithm. The
Robotics group at Texas A&M University has a good implementation of a PRM frame-
work. Working with that group last summer and last year, I have a good working
knowledge of their code. To have a working algorithm, all that is left is to integrate the
pieces developed this summer into their PRM framework.

As mentioned earlier, some optimization work is needed to reduce the running
time. An obvious approach is to compute energy calculations in parallel. Also, every
node along an edge must be checked for validity to add that edge to the roadmap.
Checking a node is independent of the other nodes, so this can be done in parallel,
giving a node (or set of nodes) to each processor. Since most of the running time is
spent in checking validity and computing energies, these improvements will produce a
significant reduction in running time. We need to look into other ways to parallelize
the code.

Once the entire algorithm is implemented and working, we can look at many differ-
ent protein-protein interactions. We would like to first consider the calmodulin/myosin
interaction for two reasons. First, calmodulin undergoes large conformational changes,
the exact situation our research is targeting. Second, it is already known how calmod-
ulin moves to bind to myosin. We can use this information to test the validity of our
results.

The work this summer provides a good foundation for future research. This re-
search will provide insight into how proteins move and function. It will mainly be
used to study how proteins interact with each other and other biological substances in
the body. This knowledge has the power to impact the bioinformatics community as a
whole, especially pharmaceutical drug design and molecular modeling.


