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Abstract

The goal of this project is to usePRM (proba-
bilistic roadmap) methodsto studyprotein fold-
ing. Given a goal (native fold) configuration,
we are able to constructa roadmapand derive
a setof possible pathsfor the protein to follow.
To do so, we modelproteinsas multi-link tree-
like robots with manydegreesof freedom.Our
work concentrateson improving our techniques
for studyingthe potential landscapeof folding
pathways. We proposeto focusour energy on
developingmethodsthat find natural groupings
of paths.

1This researchsupported in part by NSF CAREER
Award CCR-9624315, NSF Grants IIS-9619850, ACI-
9872126,EIA-9975018,EIA-9805823, andEIA-9810937,
DOEASCI ASAPLevel 2 GrantB347886, andaHewlett-
PackardEquipment Grant. SusanLin supported by the
NSFthrough theCRA-W DMP program.

1 Introduction

Folding is a very commonprocessin our lives,
rangingfrom themacroscopiclevel – paperfold-
ing or gift wrapping– to the microscopiclevel
– proteinfolding. In most instances,while one
desiresaparticularfinal stateto bereached(e.g.,
the packageis wrapped,or the protein’s struc-
ture is obtained),the knowledgeof thedynamic
folding processusedto reachaparticularstateis
of interestaswell. For this reason,we believe
motion planning hasgreat potential to help us
understandfolding. In particular, while motion
planningdoeshave the ability to answerques-
tionsaboutthereachabilityof certaingoalstates
from other states,its primary objective is to in
factdeterminethemotionsrequiredto reachthe
goal.

The problemof folding (andunfolding) is an
interesting researchtopicandhasbeenstudiedin
several applicationdomains.Lu andAkella [8]
considera cartonfolding problemandits appli-



cationsin packagingandassembly. In computa-
tional geometry, therearevariouspaperfolding
problems,suchas,givengluing instructionsfor a
polygon,constructtheuniqueconvex polyhedron
to which it folds [9]. In computational biology,
oneof themostimportantoutstandingproblems
is proteinfolding, i.e., folding aone-dimensional
amino acid chain into a three-dimensional pro-
teinstructure.

Thereare large and ongoingresearchefforts
whosegoal is to determinethe native folds of
proteins(see,e.g.,[10, 7]). In this paper, we as-
sumewe alreadyknow the native fold, andour
focusis on thefolding process,i.e.,how thepro-
tein folds to that statefrom someinitial state.
Many researchershaveremarkedthatknowledge
of the folding pathways might provide insights
into anda deeperunderstandingof thenatureof
proteinfolding [5, 11]. Althoughtherehavebeen
somerecentexperimentaladvances[4], compu-
tationaltechniquesfor simulatingthisprocessare
important becauseit is difficult to capturethe
folding processexperimentally.

Our approach is based on the successful
probabilistic roadmap (PRM) motion planning
method[6]. We haveselectedthePRM paradigm
due to its proven successin exploring high-
dimensionalconfigurationspaces(theconfigura-
tion space,or C-space,of a movable object is
thespaceconsisting of all possible positionsand
orientationsof the object). A major strengthof
PRMsis thatthey arequitesimpletoapplyrequir-
ing only the ability to randomlygeneratepoints
in C-space,andthentestthemfor feasibility. The
protein folding problem has a complication in
that the way in which the proteinfolds depends
on factorsotherthanthepurelygeometricalcon-
straints.Nevertheless,we show that theseaddi-
tional factorscan be dealtwith in a reasonable
fashionwithin thePRM framework.

Sincethiswork buildsuponourpreviouswork
[13, 12] we will describethis processin Sec-
tion 2. In Section3.1,we presenta new method
for path selection. Section 3.2 deals with a
methodfor determiningpathsimilarity, andwe
presentsomepreliminary resultsin Section4.

2 Previous Work

To apply the PRM framework to folding pro-
cesses,we mustdefinethe configurationspaces
of the objectswe are interestedin folding. In
particular, we modeltheaminoacidsequenceas
a multi-link tree-like articulated‘robot’, where
fold positions (atomic bonds) correspondto
joints andareasthat cannotfold (atoms)corre-
spondto links. For the aminoacid sequenceof
theprotein,we considerall atomicbondlengths
and bond anglesto be constants,and consider
only torsionalangles(phi andpsi angles),which
we also model as two revolute joints (2 dof).
Thus,themodelwill consistof ����� links and �
revolute joints.

Asmentionedbefore,proteinfoldinghasafew
notabledifferencesfrom usualPRM applications.
First, asour problemsarenot posedin an envi-
ronmentcontainingexternalobstacles,the only
collisionconstraintwe imposeis thatourconfig-
urationsbeself-collision free,and,for theprotein
folding problem,our preference for low energy
conformations leadsto an additionalconstraint
on the feasibleconformations. Second,in PRM

applications, it is usuallyconsideredsufficient to
find any feasiblepath connectingthe start and
goal. For our folding problems,however, we are
interestednotonly in whetherthereexistsapath,
but we are also interestedin the quality of the
path. For example,for the paperfolding prob-
lems, one is interestedin a path which makes
a minimal numberof folds, and for the protein
folding we are interestedin low energy paths.
Keepingthesedifferencesin mind, let’s proceed
throughthethreestagesof PRM nodegeneration,
roadmapconstruction,andquery.

2.1 Node Generation

Duringnodegeneration,afterthejoint anglesare
known, thecoordinatesof eachatomin thesys-
temarecalculated,andthesearethenusedto de-
terminethepotentialenergy of theconformation.
Thenodeis acceptedandaddedto the roadmap
basedon its potentialenergy. Thisfiltering helps



usto generatemorenodesin low energy regions,
whichis desirablesinceweareinterestedin find-
ing the pathwaysthat aremostenergetically fa-
vorable(low energy).

2.2 Roadmap Construction

For eachnode,we first find its � nearestneigh-
bors in the roadmap(using Euclideandistance
in C-space),for some small constant � , and
then try to connectit to them usingsomesim-
ple local planner. Eachattemptperformsfeasi-
bility checksfor � intermediateconfigurations
betweenthe two correspondingnodesas deter-
minedby the chosenlocal planner(the number
of suchconfigurationsis,e.g.,theresolutionused
for collision detection,which maybe setby the
user). If therearestill multiple connectedcom-
ponentsin theroadmapafterthis stage(which is
generallythe case,andin fact is sometimesun-
avoidable,see,e.g.,[2, 3]), othertechniqueswill
be appliedto try to connectdifferentconnected
components(see[1] for details).

When two nodesare connected,the corre-
spondingedgeis addedto the roadmap.We as-
sociatea weight with eachedge. By assigning
theweightsin thismanner, wecanfind theshort-
estor mostenergeticallyfeasiblepathwhenper-
formingsubsequentqueries.

2.3 Query

Theresultingroadmapcanbeusedtofindafeasi-
ble pathbetweengivenstartandgoalconfigura-
tions. Usually, attemptsaremadeto connectthe
startandthegoalconfigurationsto thesamecon-
nectedcomponentof the roadmap. If this suc-
ceeds,a pathis returned,otherwisefailure is re-
ported. For the protein folding, if the potential
of someintermediatenodeis too large (ascom-
paredto somepredeterminedmaximum), a fail-
ureis reported,otherwisethepathis returned.

2.4 Validation

To test,weconsideredtwo proteins,ProteinGB1
andProteinA. In general,ourresultsareveryen-
couraging– in bothcases,theformationorderof
thesecondarystructuresseemsto agreewith the
resultsof the pulselabelingexperiments.Thus,
while furtherinvestigationandtuningof thePRM

techniquefor proteinsis still needed,ourprelim-
inaryfindingsshow thatthismotionplanningap-
proachis a potentially valuable tool. For exam-
ple,it couldbeusedto studythesecondarystruc-
ture formationorderfor proteinswherethis has
notyet beendeterminedexperimentally.

3 Current Work

Ourcurrentwork involvesimprovingonourpath
selectionmethodsanddeveloping techniquesto
for determiningthehow ‘similar’ two pathsare.
Pathselectioninvolves extractingpathsfrom the
roadmaponwhichto performanalysis.Pathsim-
ilarity involves investigating ways to determine
if two pathscanbeconsideredto beof thesame
family. For this paper, we studiedProteinG (see
Figure1).

Figure 1: ProteinG has four secondarystruc-
tures:an 	 -helix andthree
 sheets.

3.1 Path Selection

Initially, we useda simple pruningtechniqueto
obtaina setof pathsfor study. We performeda



formation old new method
order method �
� 0.80 0.50 0.05� , � 3-4, � 1-2, � 1-4 181 2577 1852 69� , � 1-2, � 3-4, � 1-4 125 741 426 17� 3-4, � 1-2, � 3-4, � 0 462 186 4� 1-2, � 3-4, � , � 1-4 0 308 48 0� 1-2, � 3-4, � 1-4, � 0 16 10 0� 3-4, � 1-4, � 1-2, � 0 5 2 0

Table1: Thenumberof pathsfoundby eachpath
selectionmethod.

breadth-firstsearchof the tree, looking for the
first nodesthat satisfiedtheseparameters:the
nodemusthave at least � children,andmaynot
exceeda potential � . Thenpathswould be de-
finedastheshortestpathfrom thesenodesto the
goal.

We felt, however, that this methodwas inap-
propriate, since there is no guaranteethat the
nodeswe chooseasthe startof the pathsarein
factdenatured.In its place,we thought to usea
techniquethatwould,by itsverynature,findonly
denaturedstates.Our new methodalsoperforms
a breadth-firstsearchof the tree,but it looksfor
the first nodesthathave no secondarystructure.
We determinea nodeto have formeda specific
secondarystructure(i.e. an alphahelix or beta
sheet(seeFigure1) if the nodehasformed ���
of thenativecontactsfrom thatstructure.A con-
tact is a pair of residuescloseenoughto becon-
sideredin contactwith eachother;a native con-
tact is thereforea contactexisting in the native
fold. We do not definewhat � should be,andas
expected,the numberof pathsselecteddepends
greatlyuponthis variable(seeTable1). For the
purposeof this paper, we set ����������� , in order
to maintaina manageablecollectionof pathsto
test.

This new methodis advantageousfor at least
two reasons. First, it is logically more appro-
priate for this task. When analyzingpaths,we
are interestedin pathsstartingwith a denatured
protein. Only then may we analyzethe entire
folding process. Second,this processcan find
a significantly larger numberof paths. While

this maynot bean improvementfrom a compu-
tational point of view, it gives us more datato
work with, which implies that it is more com-
plete. Indeed,for ProteinG, this methodselects
pathswhosesecondarystructureformationorder
hadnot beenencounteredbefore. However, the
two ordersfoundby theoriginalmethodform an
overwhelmingmajority, which is encouragingas
it doesnot refute our previous work. We con-
cludedthat this methodis more thorough,and
more accuratelyreflects the variety of folding
pathwayspossible.For therestof our work, we
usethismethodin placeof theoriginal.

3.2 Path Similarity

To understandproteinfolding behavior, it is im-
portantto understandthe potentiallandscapeof
a folding protein. We alreadydivide the paths
into groupsbasedon their secondarystructure
formationorder. We are interestedin studying
two things. First, if thesegroupsmaythemselves
bebrokenfurtherinto subgroups.Thiswould in-
dicateanevenhigherlevel of separationbetween
paths. Second,we would like to study the de-
greeof similarity betweenpathsfrom different
groups.We expectthat thereis very little inter-
groupconnectivity, but if thereis, thatmaysug-
gestthatour division betweenpathswith differ-
entsecondarystructureformationorderis artifi-
cial.

To determineif two pathsaresimilar, webreak
it down into two morebasictasks.First, we try
to matchthenodesof onepathto thenodesof the
other. Then,wecheckeachpair for connectivity,
basedonpreviously definedconstraints.

3.2.1 Node Matching

We attemptto do intelligent nodematchingby
searchingwithin thepathsfor thebestmatch,as
opposedtoasimpleproportionalmatching. First,
we determinewhich path, ��� , hasfewer nodes.
Let’s call thesecondpath ��� . For eachnodein��� , startingwith the onerepresentingthe goal,
we searchwithin a set � of nodesfor the best



match. � is definedto be all nodesof ��� be-
tweenthemostrecentmatchednodeandthenode�
�! "���#��$&%'�)(+*-,)./���0��$"%'�1(+*-,�23�4� placesfrom the
goal (seeFigure2). This � is definedto be the
numberof matchesattempted,regardlessof their
success.We saythattwo nodesmaybepairedif
thedifferencein their numberof native contacts
doesnot exceeda given 5 , andif the difference
in their potentialsis not greaterthana given 6 .
If thereareno matchesthatmeetour criteria,no
pair is found. If morethanonematchis found,
thenthe ‘best’ pair is definedas the onewhich
minimizes 5 .

r.front r.back

r.front r.back

r.front r.back

r.front r.back

index

index

index

index

Figure2: An exampleof thenodematchingpro-
cess.For thefirst iteration,�7�98:�<;>=+? . Naturally,
we matchthe goal to itself. In the seconditera-
tion, �@�A8B�C;ED�? , andwe find the bestmatchto
be 5. Thus,for the third iteration, �F�G8&H�;'�I�<? ,
and we find no match. For the last iteration,�J�K8LH�;'�'M�? , andwefind thebestmatchat 13.

Oneof the major advantagesof this method,
over a simplerproportional matchingalgorithm,
is that if two pathssharethe sameprefix, this
methodwill find thosematches.However, this
methodis not idealfor casesin which theplot of5 for �!� is muchdifferentthanthat for ��� . For
instance,we might matchtwo nodeswith close

5 , but wherethegeneraltendfor 5 is risingin one
pathand falling in the other. In the future, we
may want to improve on our current technique
by consideringsetsof nodes,insteadof individ-
ual nodes,whenattemptinga match. That way,
wecanlook at thetrendsin thepathsaswell.

3.3 Path Connectivity

Given a pair of pathsanda setof matchednodes
betweenthem,we mustdecideif thesepathsare
connectable.Becausethe roadmapis directed,
we mustconsidermovementbetweenthe paths
in both directions. We definepath ��� as con-
nectableto path ��� if therearea sufficient pre-
centagek% of connectablepairsof nodesfrom��� to �N� . Weconsidernode5I� connectableto 5O�
if astraightline between5P� and 5Q� canbeformed
without self-collision, and if this line doesnot
crossoverany potentialpeaks.

For the taskof interpretingthis new informa-
tion, we choseto representthepossible connec-
tionsbetweenall pathswith a weighteddigraph,
wherethe pathsare the vertices,and the edges
representthe costof moving betweenone path
to another. This costcaneitherbe equalto the
maximum weight or averageweight of moving
betweenpaths.

The motivation behind using the maximum
weight to study this graph is the weakest link
idea;movementfrom onepathto anothershould
beat leastasdifficult asthemostdifficult move-
mentamongstthe pairsof nodes. On the other
hand,we might be interestedin usingthe aver-
ageweightasthenodematchingalgorithmmay
notwork perfectly. It is truethatournodematch-
ing methodminimizesthedifferencein potential
for nodepairs,but this differencedoesnot give
information about the potential of moving be-
tweenthem. In practicethough,it doesnot mat-
ter which weightwe use,probablybecausethey
arenot too divergent. In thefuture,however, we
might like to considerusingtheseweights,and
notournodeconnectibility method,to determine
if thepathsareconnectable.



�R� .20 group1 group2 group3
group1 5 1 1
group2 - 26 1
group3 - - 5

Table2: Numberof connectedcomponentsfor �S�T0UWV
�R� .80 group1 group2 group3
group1 5 6 4
group2 - 26 4
group3 - - 6

Table3: Numberof connectedcomponentsfor �S�T0UWX
�R� 1.0 group1 group2 group3
group1 8 29 8
group2 - 50 29
group3 - - 8

Table4: Numberof connectedcomponentsfor �S�Y'UZT

4 Results and Discussion

Herewe presentsomepreliminary resultsusing
the methodsdescribedin Sections3.1 and 3.2
(seeTables2, 3, and4). As we anticipated,as �
increases,the numberof connectedcomponents
(i.e. thedistinctsubgroupsexisting betweeneach
group) increases. At �[� �0��� , the numberof
subgroupsis maxedout,suchthateachsubgroup
containsexactly onepath. However, we didn’t
expectthatat �\�K���]� , thenumberof subgroups
within major groupsremainsalmost the same,
while there is only one subgroupbetweendif-
ferentgroups. This suggeststhat thereis more
connectivity betweengroupsthanwithin, which
seemsunnatural.

However, aswehavenotthoroughly testedour
methodsyet, it is possible that there is simply
something wehavenottakenintoaccount,or that
wearemisinterpreting ourgraphs.Of course,we
do not wantto discountthepossibility that these
resultsareaccurate,andtherefore,our previous
expectationswereflawed. If this is thecase,we
might have somevery interestingnew informa-
tion onprotienfolding behavior.

5 Conclusion and Future
Work

In this paper, we expandedon our previous
work. We proposeamethodfor studying thepo-
tential landscapeby reconstructingthe roadmap
from a group of pathsselectedfrom the orig-
inal roadmap. By employing our path simi-
larity tactics,we can eliminateirrelevant edges
(i.e. edgesbetweennon-connectablepaths),thus
makingthe roadmapeasierto query for further
study.

We would like to continue to improve the
methodspresentedhere,by further testingwith
moreproteins,suchasProteinA, andby testing
morecombinationsof variables.Until we do so,
we cannotbecertainthatthenew techniqueswe
presentin thispaperarevalid. Wealsoneedto in-
vestigatefurtherour seemingly unnaturalresults
from connectivity graphs. Oncewe have deter-
minedour new methodsto be sturdy, we would
like to testour new methodson larger proteins
whichhavenotbeenstudiedextensively.
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