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Abstract

The goal of this projectis to use PRM (proba-
bilistic roadnap) methodgo studyprotein fold-
ing. Given a goal (native fold) configuation,
we are able to constructa roadmapand derive
a setof possibé pathsfor the proteinto follow.
To do so, we modelproteinsas multi-link tree-
like robos with manydegreesof freedom. Our
work concentates on improving our techniques
for studyingthe potential landscapeof folding
pathways. We proposeto focusour enegy on
developingmethodshat find natural groupings
of paths.
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1 Introduction

Folding is a very commonprocessn our lives,

rangingfrom themacroscopidevel — paperfold-

ing or gift wrapping— to the microscopiclevel

— proteinfolding. In mostinstanceswhile one
desiresa particularfinal stateto bereachede.g.,
the packageis wrapped,or the protein’s struc-
tureis obtained) the knowledgeof the dynamic
folding procesaisedto reacha particularstateis

of interestaswell. For this reason,we believe

motion plannirg has great potentialto help us
understandolding. In particular while motion

planningdoeshave the ability to answerques-
tionsaboutthe reachabilityof certaingoal states
from other states,its primary objectve is to in

factdeterminethe motionsrequiredto reachthe
goal.

The problemof folding (and unfolding) is an
interestiy researchiopic andhasbeenstudiedin
several applicationdomains. Lu and Akella [8]
considera cartonfolding problemandits appli-



cationsin packagingandassemblyIn computa-
tional geometry thereare variouspaperfolding

problemssuchas,givengluing instructionsfor a
polygon,constructheuniquecornvex polyhedron
to which it folds [9]. In computatimal biology,

oneof the mostimportantoutstandingproblems
is proteinfolding, i.e.,folding aone-dimensioal

amino acid chaininto a three-dimensinal pro-

tein structure.

Thereare large and ongoingresearchefforts
whosegoal is to determinethe native folds of
proteins(see,e.g.,[10, 7]). In this paperwe as-
sumewe alreadyknow the native fold, and our
focusis onthefolding processi.e., how thepro-
tein folds to that statefrom someinitial state.
Many researches have remarledthatknowledge
of the folding pathways might provide insights
into anda deepemunderstandingf the natureof
proteinfolding [5, 11]. Althoughtherehave been
somerecentexperimentaladvanceg4], compu-
tationaltechniques$or simulatngthisprocessre
importantbecauseit is difficult to capturethe
folding processexperimentally

Our approachis based on the successful
proballistic roadmap (PRM) motion planning
method[6]. We have selectedhe PRM paradigm
due to its proven successin exploring high-
dimensimal configurationspacegthe configura-
tion space,or C-space,of a movable objectis
the spaceconsising of all possble positonsand
orientationsof the object). A major strengthof
PRMsis thatthey arequitesimpleto applyrequir
ing only the ability to randomlygeneratepoints
in C-spaceandthentestthemfor feasibility. The
protein folding problem hasa complication in
thatthe way in which the proteinfolds depends
onfactorsotherthanthe purelygeometricaton-
straints. Neverthelessye show thattheseaddi-
tional factorscan be dealtwith in a reasonable
fashionwithin the PRM framework.

Sincethiswork builds uponour previouswork
[13, 12] we will describethis processin Sec-
tion 2. In Section3.1, we presenta new method
for path selection. Section 3.2 deals with a
methodfor determiningpath similarity, and we
presensomepreliminary resultsin Section4.

2 PreviousWork

To apply the PrRM framework to folding pro-
cessesywe mustdefinethe configurationspaces
of the objectswe are interestedin folding. In
particular we modelthe aminoacid sequencas
a multi-link tree-like articulated‘robot’, where
fold positions (atomic bonds) correspondto
joints and areasthat cannotfold (atoms)corre-
spondto links. For the aminoacid sequencef
the protein,we considerall atomicbondlengths
and bond anglesto be constantsand consider
only torsionalangles(phi andpsiangles)which
we also model as two revolute joints (2 dof).
Thus,themodelwill consistof n + 1 links andn
revolute joints.

As mentionedefore proteinfolding hasafew
notabledifferencegrom usualPrRM applicatiors.
First, asour problemsare not posedin an ervi-
ronmentcontainingexternal obstaclesthe only
collision constraintve imposeis thatour config-
urationsbeself-collisian free,and,for theprotein
folding problem,our preferene for low enegy
conformatioms leadsto an additional constraint
on the feasibleconformatiols. Second,n PRM
applicatiors, it is usuallyconsideredufficientto
find any feasible path connectingthe start and
goal. For ourfolding problemshowever, we are
interestedhotonly in whetherthereexists a path,
but we are alsointerestedin the quality of the
path. For example,for the paperfolding prob-
lems, one is interestedin a path which makes
a minimal numberof folds, andfor the protein
folding we are interestedin low enegy paths.
Keepingthesedifferencesn mind, let's proceed
throughthethreestage®f PRM nodegeneration,
roadmaypconstructionandquery

2.1 Node Generation

Duringnodegenerationafterthejoint anglesare
known, the coordinatef eachatomin the sys-
temarecalculatedandthesearethenusedto de-
terminethe potentialenegy of theconformation.
The nodeis acceptecandaddedto the roadmap
basednits potentialenegy. Thisfiltering helps



usto generatenorenodesn low enegy regions
whichis desirablesincewe areinterestedn find-
ing the pathwaysthat are mostenepetically fa-
vorable(low enegy).

2.2 Roadmap Construction

For eachnode,we first find its £ nearesiheigh-
borsin the roadmap(using Euclideandistance
in C-space),for some small constantk, and
thentry to connectit to them using somesim-
ple local planner Eachattemptperformsfeasi-
bility checksfor N intermediateconfigurations
betweenthe two correspondinghodesas deter
mined by the chosenlocal planner(the number
of suchconfigurationss, e.g.,theresolutionused
for collision detection,which may be setby the
user). If therearestill multiple connecteccom-
ponentsn theroadmapafterthis stage(whichis
generallythe case,andin factis sometmesun-
avoidable,seee.g.,[2, 3]), othertechniqueswill
be appliedto try to connectdifferentconnected
componentgsee[1] for details).

When two nodesare connected,the corre-
spondingedgeis addedto the roadmap.We as-
sociatea weight with eachedge. By assigning
theweightsin thismanneywe canfind theshort-
estor mostenegeticallyfeasiblepathwhenper
forming subsequerueries.

2.3 Query

Theresultingroadmapanbeusedo find afeasi-
ble pathbetweengiven startandgoal configura-
tions. Usually, attemptsaremadeto connectthe
startandthegoalconfigurationgo thesamecon-
nectedcomponenif the roadmap. If this suc-
ceedsa pathis returned otherwisefailure is re-
ported. For the proteinfolding, if the potental

of someintermediatenodeis too large (ascom-
paredto somepredetermineanaximum), a fail-

ureis reportedptherwisethe pathis returned.

2.4 Validation

To test,we consideredwo proteins ProteinGB1
andProteinA. In generalpurresultsareveryen-
couraging-in bothcasestheformationorderof
the secondarstructuresseemso agreewith the
resultsof the pulselabelingexperiments.Thus,
while furtherinvestgationandtuningof the PRm

techniquéor proteinsis still neededour prelim-
inary findingsshaw thatthis motionplanningap-
proachis a potentally valuabe tool. For exam-
ple,it couldbeusedto studythesecondargtruc-
ture formationorderfor proteinswherethis has
notyet beendeterminedexperimendlly.

3 Current Work

Ourcurrentwork involvesimproving onour path
selectionmethodsand developing techniquego

for determiningthe how ‘similar’ two pathsare.
Path selectioninvolves extractingpathsfrom the

roadmapmnwhichto performanalysis.Pathsim-

ilarity involvesinvestigating waysto determine
if two pathscanbe consideredo be of the same
family. For this paper we studiedProteinG (see
Figurel).

Figure 1: ProteinG hasfour secondarystruc-
tures:ana-helix andthrees sheets.

3.1 Path Sdection

Initially, we useda simgde pruningtechniqueto
obtaina setof pathsfor study We performeda



formation old new method

order method| k¥ = 0.80| 0.50| 0.05
a, 33-4,51-2,51-4 181 2577 | 1852 69
a, B1-2,53-4,51-4 125 741 | 426 17
33-4,51-2,33-4,« 0 462 | 186 4
B1-2,53-4,a, f1-4 0 308 48 0
B1-2,33-4,81-4,« 0 16 10 0
33-4,51-4,51-2,« 0 5 2 0

Tablel: Thenumberof pathsfoundby eachpath
selectionrmethod.

breadth-firstsearchof the tree, looking for the
first nodesthat satisfiedtheseparameters:the
nodemusthave at leastk children,andmay not
exceeda potential P. Thenpathswould be de-
finedasthe shortespathfrom thesenodedo the
goal.

We felt, however, that this methodwasinap-
propriate, since there is no guaranteethat the
nodeswe chooseasthe startof the pathsarein
factdenatured.n its place,we thoudht to usea
techniquehatwould, by its verynature find only
denaturedstates Our new methodalsoperforms
a breadth-firssearchof the tree,but it looksfor
the first nodesthat have no secondarystructure.
We determinea nodeto have formed a specific
secondarystructure(i.e. analphahelix or beta
sheet(seeFigurel) if the nodehasformed k%
of thenative contactdrom thatstructure A con-
tactis a pair of residuesloseenoughto be con-
sideredin contactwith eachother;a native con-
tactis thereforea contactexisting in the native
fold. We do not definewhatk shoutl be,andas
expected,the numberof pathsselecteddepends
greatlyuponthis variable(seeTablel1). For the
purposeof this paper we setk = 0.05, in order
to maintaina manageable&ollectionof pathsto
test.

This new methodis advantageougor at least
two reasons. First, it is logically more appro-
priate for this task. When analyzingpaths,we
areinterestedn pathsstartingwith a denatured
protein. Only then may we analyzethe entire
folding process. Second,this processcan find
a significantly larger numberof paths. While

this may not be animprovementfrom a compu-
tational point of view, it gives us more datato

work with, which implies thatit is more com-

plete. Indeed,for ProteinG, this methodselects
pathswhosesecondargtructureformationorder
hadnot beenencounteredbefore. However, the
two ordersfoundby the original methodform an

overwhelmingmajority, whichis encouragin@s
it doesnot refute our previous work. We con-
cludedthat this methodis more thorough,and
more accuratelyrefleds the variety of folding

pathwayspossible.For therestof our work, we

usethis methodin placeof the original.

3.2 Path Similarity

To understangbroteinfolding behaior, it is im-
portantto understandhe potentiallandscapeof
a folding protein. We alreadydivide the paths
into groupsbasedon their secondarystructure
formationorder We are interestedn studying
two things First, if thesegroupsmaythemseles
be brokenfurtherinto subgroupsThiswouldin-
dicateanevenhigherlevel of separatiorbetween
paths. Second,we would like to study the de-
greeof similarity betweenpathsfrom different
groups. We expectthatthereis very little inter
groupconnectvity, but if thereis, thatmay sug-
gestthat our division betweenpathswith differ-
entsecondanstructureformationorderis artifi-
cial.

To determineaf two pathsaresimilar, we break
it down into two morebasictasks. First, we try
to matchthenodesof onepathto thenodesof the
other Then,we checkeachpairfor connectvity,
basedn previously definedconstraints.

3.21 NodeMatching

We attemptto do intelligent node matchingby
searchingwithin the pathsfor the bestmatch,as
opposedo asimple proportionaimatching First,
we determinewhich path, P1, hasfewer nodes.
Let’s call the secondpath P2. For eachnodein
P1, startingwith the onerepresentinghe goal,
we searchwithin a set R of nodesfor the best



match. R is definedto be all nodesof P2 be-
tweenthemostrecenimatchecodeandthenode
k % | P2.length/P1.length| + 1 placesfrom the
goal (seeFigure2). This k is definedto be the
numberof matchesattemptedregardlesf their
successWe saythattwo nodesmay be pairedif
the differencein their numberof native contacts
doesnot exceeda given ¢, andif the difference
in their potentialsis not greaterthana given p.
If thereareno matcheghatmeetour criteria, no
pair is found. If morethanonematchis found,
thenthe ‘best’ pair is definedasthe one which
minimizesc.

r.front r.back

v

index
r.front r.back
v

index r.front r.back

Lﬁon{ndex r.back

index

Figure2: An exampleof the nodematchingpro-
cess Forthefirstiteration,R = (1, 4). Naturally,
we matchthe goalto itself. In the secondtera-
tion, R = (2,8), andwe find the bestmatchto
be5. Thus,for thethird iteration,R = (6,12),
and we find no match. For the last iteration,
R = (6,13), andwe find thebestmatchat 13.

One of the major advantagef this method
over a simplerproporticnal matchingalgorithm
is that if two pathssharethe sameprefix, this
methodwill find thosematches.However, this
methodis notidealfor casesn whichthe plot of
c for P1 is muchdifferentthanthatfor P2. For
instance we might matchtwo nodeswith close

¢, butwherethegeneratendfor c is risingin one
path andfalling in the other In the future, we
may want to improve on our currenttechnique
by consideringsetsof nodes,insteadof individ-
ual nodeswhenattemptinga match. Thatway;,
we canlook atthetrendsin the pathsaswell.

3.3 Path Connectivity

Given a pair of pathsanda setof matchedhodes
betweerthem,we mustdecideif thesepathsare
connectable.Becausehe roadmapis directed,
we mustconsidermovementbetweenthe paths
in both directions We define path P1 as con-
nectableto path P2 if therearea sufficient pre-
centagek% of connectableairs of nodesfrom

P1to P2. Weconsidemodecl connectabl¢o c2

if astraightline betweerncl andc2 canbeformed
without self-collision, and if this line doesnot

crossover ary potentialpeaks.

For the taskof interpretingthis new informa-
tion, we choseto representhe possibé connec-
tionsbetweerall pathswith a weighteddigraph,
wherethe pathsare the vertices,and the edges
representhe cost of moving betweenone path
to another This costcan eitherbe equalto the
maxinum weight or averageweight of moving
betweerpaths.

The motivation behind using the maximum
weight to study this graphis the wealest link
idea;movementfrom onepathto anothershould
be atleastasdifficult asthe mostdifficult move-
mentamongstthe pairs of nodes. On the other
hand,we might be interestedn usingthe aver-
ageweightasthe nodematchingalgorithmmay
notwork perfectly It is truethatournodematch-
ing methodminimizesthedifferencein potential
for nodepairs, but this differencedoesnot give
information aboutthe potental of moving be-
tweenthem. In practicethough,it doesnot mat-
ter which weightwe use,probablybecausehey
arenottoo divergent. In thefuture, however, we
might like to considerusingtheseweights,and
notour nodeconnectibiity methodto determine
if the pathsareconnectable.



k =.20| groupl | group?2 | group3

groupl 5 1 1

group?2 - 26 1

group3 - - 5
Table2: Numberof connetedcomporentsfor k =
0.2

k =.80| groupl | group2 | group3

groupl 5 6 4

group2 - 26 4

group3 - - 6
Table3: Numberof connetedcomporentsfor & =
0.8

k =1.0| groupl | group2 | group3

groupl 8 29 8

group?2 - 50 29

group3 - - 8

Table4: Numberof connetedcomporentsfor & =
1.0

4 Resultsand Discussion

Herewe presentsomepreliminary resultsusing
the methodsdescribedin Sections3.1 and 3.2
(seeTables2, 3, and4). As we anticipatedask
increasesthe numberof connecteccomponents
(i.e. thedistinct subgroup existing betweereach
group) increases. At £ = 1.0, the numberof
subgroupss maxedout, suchthateachsubgroup
containsexactly one path. However, we didn'’t
expectthatat £ = 0.2, the numberof subgroups
within major groupsremainsalmostthe same,
while thereis only one subgroupbetweendif-
ferentgroups. This suggestghat thereis more
connectity betweengroupsthanwithin, which
seemsnnatural.

However, aswe have notthoroughy testedour
methodsyet, it is possble that thereis simply
somethiig we have nottakeninto accountpr that
we aremisinterpretiig our graphs.Of coursewe
do not wantto discountthe possibilty thatthese
resultsare accurate andtherefore,our previous
expectationsvereflawed. If thisis the casewe
might have somevery interestingnew informa-
tion on protienfolding behaior.

5 Concluson and Future

Wor k

In this paper we expandedon our previous
work. We proposea methodfor studyng the po-
tential landscapéy reconstructinghe roadmap
from a group of pathsselectedfrom the orig-
inal roadmap. By emplgying our path simi-
larity tactics,we can eliminateirrelevant edges
(i.e. edgesbetweemon-connectablpaths) thus
making the roadmapeasierto queryfor further
study

We would like to continueto improve the
methodspresentechere, by further testingwith
more proteins,suchasProteinA, andby testing
morecombination®f variables.Until we do so,
we cannotbe certainthatthe new techniquesve
presentn thispaperarevalid. Wealsoneedoin-
vestgatefurther our seemingy unnaturakresults
from connectity graphs. Oncewe have deter
minedour new methodsto be sturdy we would
like to testour new methodson larger proteins
which have not beenstudiedextensvely.
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