RNA Secondary Structure Prediction with Word Concatenations

Danielle Dees Laura Slaybaugh
Georgia Institute of Technology Rose-Hulman Institute of Technology
College of Computing Computer Science
danielle@cc.gatech.edu slaybug@rose-hulman.edu

July 23, 2001

Abstract

There has been much study focused around RNA word designs, where a RNA word is defined as a short
strand over the RNA alphabet A, U, C, and G. These RNA words are designed with specific properties
in mind to reduce and negate the natural tendencies of this biological matter. One property that word
designers must fight is the tendency of RNA to fold onto itself and form a secondary structure. In this
paper, we study the secondary structure which occurs when RNA words are concatenated into strands
with the ability to store larger quantities of information. Our goal was to find an effecient algorithm
which will take in 2n pre-designed words, where a word is defined as a sequence of RNA neucleotides of
length I, and it will return a “yes” or a “no” as to whether any of these 2" combinations will fold into
a secondary structure. This algorithm allows us to confirm or deny suspicions about which word design
properties actually prevent secondary structure.

1 Introduction

RNA is a single strand of neucleodtides; therefore, secondary structure observation is well-defined and
observable in nature. The RNA nucledotides bond to other neucleoties based on their Watson-Crick pairs
(AU, UA, CG, GC) or wobble pairs (UG, GU). It is assumed that no psuedo-knots exist in any of the
secondary structures and that each base can only bond to one other base. Each psuedo-knot free structure
can be viewed as a collection of stacked pairs and loops with exterior base pairs closing each loop. The types
of loops are hairpin, internal, and multibranched, with a bulge loop being a particular instance of an internal
loop. These structures are illustrated in Figure 1 below.

RNA secondary structure prediction can be done by determining the most stable comfiguration of the
given neucleotides. The optimal structure will have the lowest free energy. Each of the various loops and
stacked pairs will contribute a certain amount of energy to the secondary structure configuration. Zuker
develped an dynamic programming algorithm which runs in time O((I * n)*) which predicts the secondary
structure of a single RNA strand based on this energy model. This algorithm is quite useful to learn about
a single sequence of RNA neucleotides. We can determine the free energy over all 2" structures by taking
advantage of dynamic programming and modifying Zuker’s recurance relations for single strand folding.
Although similar results could be obtained by running each of the 2" structures through Zuker’s algorithm,
our algorithm will solve this problem in polynomial time.

2 Basic Algorithm

A secondary structure formed from a strand s € S where S is the set of all strands that can be created, will
have 1 < i < |s|. This algorithm will take in words will be labeled as w(1),w(1), w(2),w(2),...w(n),w(n),

and the resultant strand will choose either w(i) or w(é) for each of the n positions. This algorithm will

Hairpin Loop <_>
- Internal Loop
] Stacked
—| Pars
LI [
Bulge Multibranched
Loop Loop

Figure 1: My beautiful picture

return a “yes” or a “no” as to whether any of the 2™ strands form a secondary structure. A “yes” is
defined as the program returning a negative value. This negative value represents the energy released from
the strand as it fold into a thermodynamically favorable structure. The word#(z) function determines the
word number based on the word length [and parameter . Our modifications to Zuker’s algorithm include
added parameters into the equations. These parameters specify whether S;, the base at position ¢ where
1 <i<nxl is in w(word#(i)) or w(word#(i)) based on the parameter b; € {T,B,E}. The value T
represents w(word#(i)), the value B represents w(word#(i)), and the value E represents the case where
it does not matter to which word S; belongs. The word specification is only T or B if the recurrance calls
functions with a parameter that would be in the same word as a second parameter. Specifing the word
verifies that the algorithm’s minimal energy is calculated over the concatenation of whole words, and not
just over parts of words.

2.1 Wi
The energy of the optimal structure from S; to S; where j is the length of Vs € S is:
Ws(j) = Ws(E,j) 1)
4 —bifi—1
Wi(z,j —1) x =bj 1‘.7. modl # 0
z=FEif j —1lmodl =0
Wh(b,g) = mingd S, V(b by i g) + Ws(bii—1) (2)
e
15132;1—1 V,S,'(E7b]7l7.7) + W:IS'(Eal - l)
\ i—1modi=0
2.2 Vi

The energy of a loop which is closed with the base pair S;, S; is:

eH.IS(biabJ'?i:j)

eSg(bi,b,4,5) + Vg(z,y,i+1,j—1)
VBIg(b;,bj,1,5)

VMg(b;,bj,i, 5

V.Sl'(blab]aiaj) = min

where x which corresponds to b;41 and y which corresponds to bj_; are determined by the following psu-
docode:

1 x = E;
2 y = E;
3 if (word#(i) == word#(i+1)) then
4 x = b_i;
5 if (word#(j) == word#(j-1)) then
6 y = b_j;
7 if (word#(i+1) == word#(j-1)) then
8 if(x == E and y == E) then
9 x = b_13;
10 y = $b_13%;
11 else if(x == E) then
12 X =y;
13 else
14 y = X;
2.3 VBI,

The energy of an internal loop which is closed by the pair S;, S; is:

+ooforj <i+4

Y T
VBIS(b“b]’Z’J) _mln{, mln eL(biabj7$7y7i7j7ilajl)+V,5"('7:7y7i,7j’) (4)
i<i' <j'<j
where x which corresponds to by and y which corresponds to b; are determined by the following psudocode.

The function b() which takes in a number returns either w(word#(i)) or w(word#(i)) when the important
point is that two or more bases are in the same word and not which specific word.

1 x = E;

2 y = E;

3 if (word#(i) == word#(i’)) then

4 x = b_i;

5 if (word#(j) == word#(j’)) then

6 y = b_j;

7 if (word#(i’) == word#(j’)) then

8 if(x == E and y == E) then

9 x = b(1);

10 y = b(1);

11 else if(x == E) then

12 X =y;

13 else

14 y = X;

2.4 ‘fﬂ4é
The energy of a multibranched loop closed by the base pair S;, S; is:
VM,IS(bz;bJazaJ) = min. WM(w,y,z'+1,h—1)+WM(a:,z,h,j—1)+a (5)
i+1<h<j—1
, o . Vé(bi,bj,i,j)—l-b
WMs(bisbyrbJ) = M0 i WAL (b, 6,5 — 1) + WM, by, b,) ©)
i<h<j

where w which corresponds to b;y1,x which corresponds to by, y which correponds to by_1, and z which
corresponds to b;_jare determined by the following psudocode:

2 x = E;

3 y=E;

4 z = E;

3 if(word#(i+1) == word#(i)) then

4 w = b

5 else if(word#(i+1) == word#(h-1)) then
6 w=b;

7 if(word#(h-1) == word#(i+1)) then

8 x=w;

9 else if(word#(h-1) == word#(h)) then
10 x = b(2);

11 if(word#(h) == word#(h-1)) then

12 y=x;

13 else if(word#(h) == word#(j-1)) then
14y =b(3);

15 if(word#(j-1) == word#(h)) then

16 z=1y;

17 if(word#(j-1) == word#(j)) then
18 if(z == b(2)) then

19 b(2) = bj;

20 else if(z == b(3)) then

21 b(3) = b;; 22 else

23 z=bj

3 Details of the calculations

This algorithm is dependent on eHg, eS%, and eLy which are the free energy equations for a hairpin loop, a
stacked pair, and an internal loop respectively. Additionally, we have a table stack that returns the energy
of stacking the pairs i,i + 1 on j,j — 1 and functions that return the penatly for various structures.

3.1 eS§

eS§ originally takes 2 values, i and j. eS4(4,7) in turn calls stack(i,i + 1,5 —1,7). When we call eS§ we
actually want mig eS(s,4,7). However, we do not need to test every possible s € S because the nucleotides
se€

relevant to eSg are only i,3+ 1, j—1, and j. Thus, what we actually do is create a set of strings R as defined
below.

R:{r1,...,ralrg[0] = si,7g[1] = siy1,7¢[2] = 85-1,7¢[3] = sj|s € Sand 1 < g < n}

Thus, we actually call néilr% stack(ro,r1,72,73)-
T

3.2 eHj

eHg originally takes i and j as well. This returns the value
stack(i,i + 1,5 — 1,j) + hPenalty(j — i — 1). When we call eHg we actually want melg eH(s,i,7) Which
s

simplifies to mig{stack(ro,rl, r2,73)} + hPenalty(j —i — 1).
TE

3.3 elLj

eL's originally takes ¢,4',j', and j, where ¢ and j close exterior end of the bulge or loop and i’ and j' close
the interior end of the bulge or loop. eL’; returns the value stack(i,i+1,j—1,7) + stack(i',i' + 1,5 —1,5').
For our case then,we first define a new set

RL : {rly,...,rln|rl4[0] = s, 7lg[1] = si1,714[2] = sir,...,714[7] = sj|s € Sand 1 < ¢ < n}

eL's will return ?eliélL{stack(rlo, rly,rlg,rl7) + stack(rla, rls,rla,rls)}.
T

4 Protein Encodings

While researching this question, we initiated contact with a pair of researchers at SUNY-Stony Brook, Barry
Cohen and Steven Skiena. They had come across the same problem we are working on, but had answered
it for a different reason. They were researching the coding of proteins with RNA. Each RNA strand uses
codes of triplets that translate to one of twenty amino acids or a terminate signal. As there are 4° possible
triplets, there is some redundancy in codes for amino acids. Some may have just one triplet code, others
have as many as six. When a protein is built from these amino acids, this results in an exponential number
of possible RNA strands that would code for the protein, or the diamond graph we saw earlier.

The code we recieved from them read two input files, one that indicated all the triplet codes and the
amino acids they represent, and one that read a string of amino acids used to build the protein. We were
able to rewrite these files to use a set of words and “amino acids” of our own choosing.

5 Testing Considerations

We used this program to run simulations with words designs described in papers by Braich, Frutos, and
others. Each of the word design strategies keep certain characteristics in mind, such as hamming distance,
reverse hamming distance, GC content, three or four letter alphabet, and unique subwords. In each of
the tests, there indicate that no secondary structures would form. This prompted us to ask the following
question: When designing DNA words, what considerations are most important and can we get a ballpark
“range” on acceptable values for them?

5.1

Before answering this, we must first develop a testing procedure, and acceptable limits for our testing.
Therefore we ask the following question: Given a set of words S is there an acceptable limit n, for which we
can state that no word in S* will have a secondary structure if no word in S™ has secondary structure?

5.2

Our hypothesis is yes, this limit exists, and we hope to prove it in the following way:

Any strand with secondary structure will have a substructure str with positive energy held together by
a set of stacked pairs. The energy of str will either be greater than or less than the energy of the smallest
possible hairpin creatable by deleting whole unwanted words from str.

5.2.1 Case 1: str has energy > smallest possible hairpin

In this case, we can replace str with the smallest possible hairpin, creating str’. |str'| gives us a bounds n
for testing.

5.2.2 Case 2: str has energy < smallest possible hairpin

In this case, str can be built from the a context free grammar L, where L is defined as the following grammar.

W WV

Vo — tVATtLE|tMoE

Vi — Vet HytLEtM T

Vo — tVaT|Ho|tLE|tMyT

Vs — Hs|tLE[tMst

H; — ttitotst

Hy — ttitot

H, — it

L — V|Vt

L — tVi|Vit|th|Lt

Is = tV|Vatlth| Lot

My — WMyW M,

My — WMoW M |W MW M,

My — WMW M |W MyW Mo|W MoW M,

Ms — W MW Ms|W MyW My |W MyW My |W MW M,
WMy, — VoWM|Vo
WMy — W Mo|VoW My |ViW Mo |Vi |t
WM, — tWM|VoW Mo|ViW M, |[VaW Mo |Va
WM — WMy VoW Ms|Vi W Mo |[VaW My |VaW Mo|Vs

Thus to determine if any of these exist in S* we run a context free grammar on LS* and see if it is
empty. If it is not empty, we can find the pumping length, p, of the context free grammar, to get a bounds
for testing. The maximum bounds for testing will be max{n, p}.

6 Future Work

The most practical direction for future work would be to preform further tests on RNA word sets to determine
which elements of word design are most important. These tests would determine which of the more common
constraints of word design, GC percent contraint, Hamming constraint, reverse-complement constraint, the
reverse constraint, and the free energy constraint [1], are most relevant to word design. This task would
include determining ways to hold all but one constraint constant, while varying the other over a range of
values. This is a very difficult and time consuming task, as all the variables are dependent on one another.
The program that Barry Cohen and Steven Skiena developed could also be extended in many ways to test
word design problems involving words of different lengths. In many current word designs, spacers of a
smaller length than the words are placed between the words to reduce the secondary structure occurances.
A program which could test these spaces would be useful in many instances.

References

[1] A. Marathe, A. Condon, R. Corn. On Combinatorial DNA word design. DNA based Computers V,
DIMACS Series, E. Winfree, D. Gifford Eds., AMS Press, 2000, 75-89.

[2] R. B. Lyngso, M. Zuker, and C. N. S. Pedersen. An improved algorithm for RNA secondary
structure prediction. Tech. report BRICS-RS-99-15, Aarhus Univ., Datalogisk afdeling, May1999.
http://www.daimi.aau.dk/ cstorm/papers/brics,na.ps

[3] B. Cohen and S. Skiena. Optimizing RNA Secondary Structure Over All Possible Encouding of a Given
Protein. Currents in Computational Molecular Biology, 2000, Universal Academy Press, Tokyo.

